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Abstract

This paper solves three open problems about the decidability of the vector
and scalar reachability problems and the point to point reachability by frac-
tional linear transformations over finitely generated semigroups of matrices from
SL(2,Z). Our approach to solving these problems is based on the characteri-
zation of reachability paths between vectors or points, which is then used to
translate the numerical problems on matrices into computational problems on
words and regular languages. We will also give geometric interpretations of
these results.
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1. Introduction

Decision problems on matrices were intensively studied from 1947 when
A. Markov showed the connection between classical computations and problems
for matrix semigroups [1]. Moreover, matrix products play an essential role in
the representation of various computational processes, i.e. linear recurrent se-
quences [2, 3, 4], arithmetic circuits [5], hybrid and dynamical systems [6, 7],
probabilistic and quantum automata [8], stochastic games, broadcast protocols
[9], optical systems, etc. New algorithms for solving reachability problems in
matrix semigroups can be incorporated into software verification tools and used
for analysis of mathematical models in physics, chemistry, biology, ecology, and
economics.

However, many computational problems for matrix semigroups are inher-
ently difficult to solve even when the problems are considered in dimension
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two, and most of these problems become undecidable in general starting from
dimension three or four. Examples of such problems are

• The membership problem: Let S = 〈G〉 be a semigroup generated
by a finite set G of n× n matrices. Determine whether a given matrix
M belongs to S, that is, determine whether there exists a sequence of
matrices M1,M2, . . . ,Mk in G such that M = M1 ·M2 · . . . ·Mk. If M is
the zero or the identity matrix, then this problem is called the mortality
or the identity problem, respectively.

• The vector reachability problem: Let x and y be two vectors and
S be a given finitely generated semigroup of n× n matrices. Determine
whether there is a matrix M ∈ S such that Mx = y.

• The scalar reachability problem: Let x and y be two vectors, λ be a
scalar, and S be a given finitely generated semigroup of n× n matrices.
Determine whether there is a matrix M ∈ S such that x>My = λ.

All the above problems are tightly connected with each other, including other
problems such as the emptiness problem for matrix semigroups intersection and
the freeness problem, i.e. to decide whether each element of S = 〈G〉 can be
expressed uniquely as a product of generating matrices from G [10].

The vector reachability problem can be seen as a parameterized version
of the membership problem, where some elements of a matrix M are either
independent variables or variables linked by some equations. In contrast to the
original membership problem, where all values of M are constants, in the vector
reachability problem we may have an infinite set of matrices that transform
a vector x to y. Thus the decidability results for the membership cannot be
directly applied to the vector reachability problem.

The scalar reachability can be viewed as a vector to hyperplane reachability
problem. Indeed, we can rewrite the equation x>My = λ as a system of two
equations: My = z and x>z = λ. So, the question becomes if there is a matrix
M ∈ S that maps a given vector y to a vector z that lies on a hyperplane
x>z = λ. Because there are infinitely many vectors on a hyperplane, decidability
of the scalar reachability problem does not follow directly from the decidability
of the vector reachability problem.

Most of the problems such as membership, vector reachability and freeness
are undecidable for 3× 3 integer matrices. The undecidability proofs in matrix
semigroups are mainly based on various techniques and methods of embedding
universal computations into three and four dimensional matrices and their prod-
ucts. The case of dimension two is the most intriguing one since there is some
evidence that if these problems are undecidable, then this cannot be proved us-
ing a construction similar to the one used for dimensions 3 and 4. In particular,
there is no injective semigroup morphism from pairs of words over any finite
alphabet (with at least two elements) into 2 × 2 matrices over C [11], which
means that the encoding of independent pairs of words in 2× 2 complex matri-
ces is impossible, and a straightforward reduction from the Post Correspondence
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Problem or a Halting Problem cannot be used to prove undecidability in 2× 2
matrix semigroups over Z, Q or C. The only undecidability result in dimension
two for the vector reachability and the membership problems has been shown
in the case of 2× 2 matrices over quaternions [12].

The main hypothesis is that the reachability problems for 2×2 matrix semi-
groups over integer, rational or complex numbers are decidable, but not much
is known about the status of these problems. There was some progress on the
membership problem, which was shown to be decidable in SL(2,Z), and the
identity problem, which was shown to be decidable in Z2×2 [13]. Later the
decidability of the freeness problem was shown for SL(2,Z) [14] and for upper-
triangular 2× 2 matrices with rational entries when the products are restricted
to certain bounded languages [15]. The mortality, identity and vector reachabil-
ity problems were shown to be at least NP-hard for SL(2,Z) [16, 10], but for the
finitely generated subgroups of the modular group PSL(2,Z) the membership
problem was shown to be decidable in polynomial time by Gurevich and Schupp
[17].

Recently, the membership problem was proven to be decidable for non-
singular matrices from Z2×2 [18] and for matrices from Z2×2 with determinants 0
and ±1 [19]. Furthermore, it was shown that the following problems in SL(2,Z)
are NP-complete: identity, membership and non-freeness [20, 21].

The algorithmic properties of SL(2,Z) are important in the context of many
fundamental problems in hyperbolic geometry [22, 23, 24], dynamical systems
[25], Lorenz/modular knots [26], braid groups [27], particle physics, high energy
physics [28], M/string theories [29], ray tracing analysis, music theory [30] and
can lead to further decidability results for matrix semigroups in Z2×2 or Q2×2.

In this paper we solve three open problems about the decidability of the
vector and scalar reachability problems over finitely generated semigroups of
matrices from SL(2,Z) and the point to point reachability (over rational num-
bers) for fractional linear transformations fM (x) = ax+b

cx+d , where the associated

matrix M =

[
a b
c d

]
belongs to a semigroup in SL(2,Z). Our approach to

solving these problems for 2 × 2 matrix semigroups is based on the analysis
of reachability paths between vectors or points. This analysis is then used to
translate the numerical problems on matrices into computational problems on
words and regular languages. We also present a few extensions of our main
results and give a geometric interpretation of reachability paths.

The decidability proof in dimension two presented in this paper is the first
nontrivial new result concerning the vector reachability problem since 1996 when
it was shown that the problem is decidable for any commutative matrix semi-
group in any dimension [31] and for a special case of non-commuting matrices
[32]. On the other hand, in the general case of non-commuting matrices the
problem is known to be undecidable already for integer matrices in dimension
three [33].
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2. Preliminaries

The integers and rationals are denoted by Z and Q, respectively, and SL(2,Z)
is a group of 2×2 integer matrices with determinant 1. The notation a | b means
that a divides b, and a - b means that a does not divide b, where a and b are

integer numbers. We also use the notations e1 =

[
1
0

]
, e2 =

[
0
1

]
and 0 =

[
0
0

]
.

Definition 1. With each matrix M =

[
a b
c d

]
∈ SL(2,Z) we associate a frac-

tional linear map (also called Möbius transformation) fM : Q → Q defined
as

fM (x) =
ax+ b

cx+ d
.

This definition can be extended to f : Q∪{∞} → Q∪{∞} in a natural way by
setting fM (∞) = a

c if c 6= 0, fM (∞) =∞ if c = 0, and fM (x) =∞ if cx+d = 0.
Note that we have fM1

◦ fM2
= fM1M2

for any matrices M1 and M2.

Let M1, . . . ,Mn be a finite collection of matrices. Then 〈M1, . . . ,Mn〉 de-
notes the multiplicative semigroup (including the identity matrix) generated by
M1, . . . ,Mn.

Definition 2. The vector reachability problem (VRP) in SL(2,Z) is defined
as follows: Given two vectors x and y with integer coefficients and a finite
collection of matrices M1, . . . ,Mn from SL(2,Z), decide whether there exists a
matrix M ∈ 〈M1, . . . ,Mn〉 such that Mx = y.

Definition 3. The reachability problem by fractional linear transformations
(FLT) in SL(2,Z) is defined as follows: Given two rational numbers x and y
and a finite collection of matrices M1, . . . ,Mn from SL(2,Z), decide whether
there exists a matrix M ∈ 〈M1, . . . ,Mn〉 such that fM (x) = y.

Definition 4. The scalar reachability problem in SL(2,Z) is defined as follows:
Given two vectors x, z with integer coefficients, an integer number λ, and a finite
collection of matrices M1, . . . ,Mn from SL(2,Z), decide whether there exists a
matrix M ∈ 〈M1, . . . ,Mn〉 that satisfies the equation z>Mx = λ.

3. Overview of the main results

The main result of this paper is that the vector and scalar reachability
problems as well as the reachability problem by fractional linear transformations
in SL(2,Z) are decidable (Theorem 14 and Theorem 16). Both proofs follow the
same pattern. We will use the fact that any matrix M from SL(2,Z) can be

expressed as product of matrices S =

[
0 −1
1 0

]
and R =

[
0 −1
1 1

]
. So we can

represent any M ∈ SL(2,Z) by a word w in the alphabet {S,R}.
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The main idea of our proof is to show that the solution set of the equation
Mx = y is either empty or has the form{

B

[
1 1
0 1

]t
C : t ∈ Z

}
,

where B and C are some matrices from SL(2,Z) that can be computed in
polynomial time from x and y (Theorem 7 and Corollary 8). Similarly, the
solution set of the equation fM (x) = y can be presented as a union of two sets of
this form (Theorem 9). After translating matrices into words, these sets become
regular languages. On the other hand, the semigroup 〈M1, . . . ,Mn〉 can be also
described by a regular language. Indeed, if Mi is represented by a word wi, then
the semigroup 〈M1, . . . ,Mn〉 corresponds to the language (w1 ∪ · · · ∪ wn)

∗
.

The final step of the proof is to show that the emptiness problem of the
intersection of two regular subsets in SL(2,Z) is decidable (Proposition 13).
The idea of the proof relies on the fact that the intersection of two regular
languages is regular, and that the emptiness problem for regular languages is
decidable. The problem here is that we cannot apply these facts directly because
for each matrix M ∈ SL(2,Z) there are infinitely many words w ∈ {S,R}∗ that
correspond to M , and only some of them may appear in a given language.
However there is only one canonical word that corresponds to M , that is, the
word that does not have substrings of the form SS or RRR. So, our solution
is to take any automaton A and turn it into a new automaton Can(A) that
accepts only canonical words and defines the same subset of SL(2,Z) as A.

The construction of the automaton Can(A) was inspired by the work of
Choffrut and Karhumaki [13]. In a simplified form it looks like this. Note
that in SL(2,Z) we have an equality S2 = R3 = −I. So, to construct Can(A)
we do the following: for every pair of states q and q′ that are connected by a
path labelled by SS or RRR, we add a new transition from q to q′ labelled by
X, where X is a special symbol that represents −I. Furthermore, we add ε-
transitions for every pair of states q and q′ that are connected by a path labelled
by XX . We apply these steps iteratively until no new transitions can be added.

Now to solve the emptiness problem for the intersection of two regular sub-
sets of SL(2,Z) defined by regular languages L1 and L2, we take finite automata
A1 and A2 that accept L1 and L2, respectively, and construct new automata
Can(A1) and Can(A2) as described above. After that we check whether the
languages of Can(A1) and Can(A2) have nonempty intersection.

In the end of Section 5 we will show how to extend these decidability results
to arbitrary regular subsets of SL(2,Z), i.e. subsets that are defined by arbitrary
finite automata. Using this technique we will show how to algorithmically solve
the equation

Mx1
1 · · ·M

xk
k x = Ny1

1 · · ·N
y`
` y,

where x,y are fixed vectors from Z×Z, the matrices M1, . . . ,Mk and N1, . . . , N`
are from SL(2,Z), and x1, . . . , xk and y1, . . . , y` are unknown non-negative in-
tegers.

5



Finally, in Section 6 we will prove that the scalar reachability problem in
SL(2,Z) is decidable.

We will also give geometric interpretations of reachability paths for the vector
and scalar reachability problems and for the reachability problem by fractional
linear transformations (Figures 1, 2 and 4).

4. Solutions of the equations Mx = y and fM(x) = y in SL(2,Z)

A characterization of the matrices M ∈ SL(2,Z) that satisfy the equations
Mx = y and fM (x) = y are given in Corollary 8 to Theorem 7 and in Theorem 9,
respectively. But first we prove one simple lemma which states that the gcd of a
vector’s coefficients is preserved under multiplication by matrices from SL(2,Z).
We will use this fact several times in our arguments.

Lemma 5. Let x =

[
x1

x2

]
and y =

[
y1

y2

]
be vectors from Z× Z and let M be a

matrix from SL(2,Z) such that Mx = y. Then gcd(x1, x2) = gcd(y1, y2).

Proof. Take any k ∈ Z such that k | x1, x2 and let M =

[
a b
c d

]
. Then from

Mx = y we have y1 = ax1 + bx2 and y2 = cx1 + dx2. Thus k | y1, y2. Now
since M ∈ SL(2,Z), M−1 is also in SL(2,Z), and Mx = y is equivalent to
M−1y = x. So, if k ∈ Z is any number such that k | y1, y2, then k | x1, x2.
Therefore, gcd(x1, x2) = gcd(y1, y2).

Definition 6. Suppose x =

[
x1

x2

]
is a nonzero vector such that gcd(x1, x2) = 1.

Let u and v be integer numbers such that x1u + x2v = 1. Define the matrix

A(x) = A(x1, x2) as follows A(x) = A(x1, x2) =

[
x1 −v
x2 u

]
. Then we have that

A(x) ∈ SL(2,Z) and A(x)e1 = x.
Note that there are infinitely many pairs of u, v which satisfy the equation

x1u + x2v = 1. For our proofs it does not matter which particular values of u
and v are chosen in the definition of A(x). For definiteness, we assume that u
and v are the integers produced by the extended Euclidean algorithm. So the
matrix A(x) can be constructed in PTIME from x.

Theorem 7. Let x =

[
x1

x2

]
and y =

[
y1

y2

]
be integer vectors such that

gcd(x1, x2) = gcd(y1, y2) = 1.

Then all solutions of the equation Mx = y, where M belongs to SL(2,Z), are
given by

{A(y)T tA(x)
−1

: t ∈ Z},

where T =

[
1 1
0 1

]
∈ SL(2,Z).
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Proof. First, let us find a particular solution to the equation Mx = y which
belongs to SL(2,Z). Consider the matrices A(x) and A(y) constructed as in

Definition 6. In this case A(x)e1 = x and A(y)e1 = y. So, A(x)
−1

x = e1 and

hence A(y)A(x)
−1

x = A(y)e1 = y.

So, M0 = A(y)A(x)
−1

is a particular solution to Mx = y. Now the equation
Mx = y becomes equivalent to (M −M0)x = 0. Therefore, we need to describe
all solutions of the equation M ′x = 0, where M ′ is a 2× 2 integer matrix such
that det(M ′ +M0) = 1.

Let M ′ =

[
a b
c d

]
, where a, b, c, d are integer numbers. Then the equation

M ′x = 0 can be written as

[
a b
c d

] [
x1

x2

]
=

[
0
0

]
or as a system

{
ax1 + bx2 = 0

cx1 + dx2 = 0

Since gcd(x1, x2) = 1, we conclude from the above equations that x1 divides
both b and d. So we can write b = kx1 and d = `x1 where k, ` are integers.
Then it’s easy to see that a = −kx2 and c = −`x2. So M ′ has the form

M ′ =

[
−kx2 kx1

−`x2 `x1

]
=

[
k
`

]
[−x2, x1].

Recall that M ′ must satisfy the property det(M ′+M0) = 1, which will give

us a restriction on k and `. Suppose M0 =

[
a0 b0
c0 d0

]
, then

det(M ′ +M0) = det

[
a0 − kx2 b0 + kx1

c0 − `x2 d0 + `x1

]
So, k and ` must satisfy the equation

(a0 − kx2)(d0 + `x1)− (b0 + kx1)(c0 − `x2) = 1 or

a0d0 + a0`x1 − kx2d0 − kx2`x1 − b0c0 + b0`x2 − kx1c0 + kx1`x2 = 1

Using that a0d0 − b0c0 = 1, we obtain

a0`x1 − kx2d0 + b0`x2 − kx1c0 = 0 or

`(a0x1 + b0x2)− k(c0x1 + d0x2) = 0

Recall that M0x = y, that is,

[
a0 b0
c0 d0

] [
x1

x2

]
=

[
y1

y2

]
. So, the above equation

becomes `y1− ky2 = 0, which gives us a restriction on k and `. By the assump-
tion, gcd(y1, y2) = 1. Hence y1 must divide k, and we can write k = ty1, where
t is an integer. Substituting this into `y1 − ky2 = 0 we obtain that ` = ty2.
Therefore,

M ′ =

[
k
`

]
[−x2, x1] = t

[
y1

y2

]
[−x2, x1].
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Note that

[
y1

y2

]
= A(y)e1 and [−x2, x1] = [0, 1]

[
u v
−x2 x1

]
= e>2 A(x)

−1
,

where u, v are integers used in the definition of A(x).1

Therefore, M ′ = tA(y)e1e
>
2 A(x)

−1
. So, the general solution to Mx = y in

SL(2,Z) has the form

M = M0 +M ′ = A(y)A(x)
−1

+ tA(y)e1e
>
2 A(x)

−1

= A(y)(I + te1e
>
2 )A(x)

−1

Using that e1e
>
2 =

[
1
0

]
[0, 1] =

[
0 1
0 0

]
, we obtain

M = A(y)(I + te1e
>
2 )A(x)

−1
= A(y)

([
1 0
0 1

]
+ t

[
0 1
0 0

])
A(x)

−1

= A(y)

[
1 t
0 1

]
A(x)

−1
= A(y)T tA(x)

−1

So, all solutions to the equation Mx = y in SL(2,Z) are given by

{A(y)T tA(x)
−1

: t ∈ Z}.

Corollary 8. Let x =

[
x1

x2

]
and y =

[
y1

y2

]
be two nonzero integer vectors.

(1) If gcd(x1, x2) 6= gcd(y1, y2), then Mx = y has no solution in SL(2,Z).

(2) If gcd(x1, x2) = gcd(y1, y2) = d, then all solutions to Mx = y in SL(2,Z)
are exactly

{A( 1
dy)T tA( 1

dx)
−1

: t ∈ Z}.

Proof. The first item is a direct corollary from Lemma 5. To prove the second
item, suppose gcd(x1, x2) = gcd(y1, y2) = d and let x′ = 1

dx and y′ = 1
dy.

Obviously, the equation Mx = y is equivalent to Mx′ = y′. Note that
gcd(x′1, x

′
2) = gcd(y′1, y

′
2) = 1. Hence by Theorem 7 all solutions to the equation

Mx′ = y′ are {A(y′)T tA(x′)
−1

: t ∈ Z}.

In the case when gcd(x1, x2) = gcd(y1, y2) = d, the solutions

{A( 1
dy)T tA( 1

dx)
−1

: t ∈ Z}.

have the following geometric interpretation: first, we apply A( 1
dx)
−1

to x and

arrive at

[
d
0

]
, then we loop at

[
d
0

]
for t many times using T , and finally apply
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x

y

(d, 0)

A( 1
dx)
−1A( 1

dy)

T t

Figure 1: Geometric interpretation of the transformation y = A( 1
d
y)T tA( 1

d
x)

−1
(x).

A( 1
dy) to move from

[
d
0

]
to y. Figure 1 gives an illustration of these transfor-

mations.
Theorem 7 and Corollary 8 provide us with a characterization of the matrices

M ∈ SL(2,Z) that map vector x to vector y. This characterization will be used
later to prove the decidability of the vector reachability problem. We now give
a similar characterization of the matrices M ∈ SL(2,Z) for which the fractional
linear transformation fM maps a number x to number y. In fact, we will do this
by reducing this problem to the problem of finding all solutions of the equation
Mx = y which we discussed above.

Theorem 9. Let x = x1

x2
and y = y1

y2
be rational numbers, where x1, x2, y1, y2

are integers such that gcd(x1, x2) = gcd(y1, y2) = 1. Also let F(x, y) be the
following set of matrices from SL(2,Z):

F(x, y) = {M ∈ SL(2,Z) : fM (x) = y}.

Then F(x, y) = {±A(y1, y2)T tA(x1, x2)
−1

: t ∈ Z}.

Proof. Consider the equation fM (x) = y, where M =

[
a b
c d

]
is an unknown

matrix from SL(2,Z). We can rewrite it as

ax1

x2
+ b

cx1

x2
+ d

=
y1

y2
or

ax1 + bx2

cx1 + dx2
=
y1

y2
. (1)

Consider the vectors x =

[
x1

x2

]
, y =

[
y1

y2

]
, and z =

[
z1

z2

]
, where z is the vector

with coordinates z1 = ax1 + bx2 and z2 = cx1 + dx2. So we have that z = Mx.
In this notation Equation (1) is equivalent to the fact that vector z = Mx
belongs to the set {ky : k ∈ Z}.

Recall that gcd(x1, x2) = 1 and hence, by Lemma 5, gcd(z1, z2) = 1. Thus
if z = ky for some k ∈ Z, then k = ±1. In other words, we showed that

1Here one can see why a particular choice of u and v is not important.
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Equation (1) is equivalent to two matrix equations: Mx = y or Mx = −y.
Therefore,

F(x, y) = {M ∈ SL(2,Z) : Mx = y} ∪ {M ∈ SL(2,Z) : Mx = −y}.

Since gcd(x1, x2) = gcd(y1, y2) = 1, by Theorem 7 we have that

F(x, y) = {A(y)T tA(x)
−1

: t ∈ Z} ∪ {A(−y)T tA(x)
−1

: t ∈ Z}.

To finish the proof, we note that A(−y) = −A(y).

The transformation y = fM (x), where M = A(y1, y2)T tA(x1, x2)
−1

, has the
following geometric interpretation: first it maps x to ∞ using fA(x1,x2)−1 , then
it loops at∞ for t many times using fT , and finally maps∞ to y using fA(y1,y2).
Figure 2 gives an illustration of these transformations.

∞
x y

fT tfA(x1,x2)−1

fA(y1,y2)

Figure 2: Geometric interpretation of the transformation y = fA(y1,y2)T tA(x1,x2)
−1 (x).

5. Decidability of VRP and FLT

We now prove that the intersection emptiness problem of two regular subsets
in SL(2,Z) is decidable (Proposition 13). Then in the proof of Theorem 14 we
will show that the solution sets of the equations Mx = y and fM (x) = y are
regular subsets of SL(2,Z). Using these results and the fact that the semigroups
in SL(2,Z) are also regular subsets, we will conclude that the vector reachability
problem and the reachability problem by fractional linear transformations in
SL(2,Z) are decidable.

Consider an alphabet Σ = {S,R,X} consisting of three symbols S, R and X
and define the mapping ϕ : Σ→ SL(2,Z) as follows:

ϕ(S) =

[
0 −1
1 0

]
, ϕ(R) =

[
0 −1
1 1

]
and ϕ(X) = −I =

[
−1 0
0 −1

]
.

We can extend this mapping to the morphism ϕ : Σ∗ → SL(2,Z) in a natural
way. The matrices ϕ(S) and ϕ(R) are in fact generators of SL(2,Z), so ϕ is
surjective.

Definition 10. A word w ∈ Σ∗ is called reduced if it does not have substrings
of the form SS or RRR. We say that w is canonical if it is reduced and either
w does not contain X or X appears only once as the first letter in w.
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In our proof we will make use of the following well-known fact.

Theorem 11 ([34, 35, 36]). For every M ∈ SL(2,Z), there exists a unique
reduced word w ∈ {S,R}∗ such that either M = ϕ(w) or M = −ϕ(w).

Therefore, for every M ∈ SL(2,Z), there exists a unique canonical word
w ∈ Σ∗ such that M = ϕ(w).

Definition 12. (1) We call two words w1 and w2 from Σ∗ equivalent, denoted
w1 ∼ w2, if ϕ(w1) = ϕ(w2).

(2) Two languages L1, L2 ⊆ Σ∗ are called equivalent, denoted L1 ∼ L2, if
for any w1 ∈ L1, there is w2 ∈ L2 such that w1 ∼ w2, and vice versa if for any
w2 ∈ L2, there is w1 ∈ L1 such that w2 ∼ w1. In other words, L1 ∼ L2 if and
only if ϕ(L1) = ϕ(L2), i.e. they define equal subsets of SL(2,Z).

(3) Two finite automata A1 and A2 over alphabet Σ are called equivalent,
denoted A1 ∼ A2, if L(A1) ∼ L(A2).

Note that by Theorem 11 for every w ∈ Σ∗ there exists a unique canonical
word w′ such that w′ ∼ w.

Let A be a finite automaton over alphabet Σ. We now show how to construct
a new automaton Can(A) equivalent to A that accepts only canonical words.
This construction was inspired by the work of Choffrut and Karhumaki [13]. It
also appeared in our other paper [18] in a more general form. We will use it
later in Proposition 13 to prove that the emptiness problem for the intersection
of two regular subsets in SL(2,Z) is decidable.

First, we apply the following procedure to A:

(1) For any pair of states q, q′ in A, if there is a path from q to q′ labelled by

XX , we add an ε-transition q
ε−→ q′.

(2) For any pair of states q, q′ in A, if there is a path from q to q′ labelled

by2 SXαS, where α ∈ {0, 1}, we add a new transition q
Xβ−−→ q′, where

β = 1− α.

(3) For any pair of states q, q′ in A, if there is a path from q to q′ labelled

by RXα1RXα2R, where α1, α2 ∈ {0, 1}, we add a new transition q
Xγ−−→ q′,

where γ ∈ {0, 1} is such that γ ≡ α1 + α2 + 1 (mod 2).

We repeat the above steps iteratively until no new transitions can be added.
Obviously, this procedure eventually terminates because we do not add new
states to A. Let A1 be the resulting automaton. It is not hard to see that
A1 ∼ A because XX ∼ ε, SXαS ∼ X1−α and RXα1RXα2R ∼ Xγ , where
γ ∈ {0, 1} and γ ≡ α1 + α2 + 1 (mod 2).

Figure 3 gives an illustration of this construction. At the first iteration we

add transitions q0
X−→ q3 and q3

X−→ q5. Then at the second iteration we add an
ε-transition q0

ε−→ q5. At the next iteration no new transitions can be added, so
the procedure terminates.

2In our notation X0 denotes the empty word.
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A1: q0 q1 q2 q3 q4 q5

A: q0 q1 q2 q3 q4 q5
R R R S S

R R R S S

X X

ε

Figure 3: An example of an automaton A1 (below) constructed from an automaton A (above).

By construction, for every w ∈ L(A) there is w1 ∈ L(A1) such that w1 ∼ w
and w1 does not contain subwords SXαS or RXα1RXα2R for α, α1, α2 ∈ {0, 1}.
That is, w1 is almost in canonical form except that letter X may appear in the
middle of w1.

To get rid of these extra X’s we do the following: for every transition q
S−→ q′

which appears in A1, we add new states p1, p2 and a new path of the form

q
X−→ p1

S−→ p2
X−→ q′.

Similarly, for every transition q
R−→ q′ which appears in A1, we add new states

p1, p2 and a new path of the form

q
X−→ p1

R−→ p2
X−→ q′.

Let A2 be the resulting automaton. Note that since S ∼ XSX and R ∼ XRX ,
A2 is equivalent to A1.

Finally, for any pair of states q, q′ in A2, if there is a path from q to q′

labelled by XX , we add an ε-transition q
ε−→ q′. Again, we apply this procedure

iteratively until no new ε-transitions can be added. Let A3 be the resulting
automaton. By construction, we have A3 ∼ A2 ∼ A1 ∼ A.

The automaton A3 also has the property that for every w ∈ L(A) there is a
canonical word w3 ∈ L(A3) such that w3 ∼ w. Indeed, by the above observation,
there is w1 ∈ L(A1) such that w1 ∼ w and w1 does not contain subwords SXαS
and RXα1RXα2R for α, α1, α2 ∈ {0, 1}. Suppose w1 has the form

w1 = u1Xu2X . . .Xun−1Xun,

where ui ∈ {S,R}∗ for i = 1, . . . , n. Consider a word w2 which is obtained from
w1 as follows. If the number of X’s in w1 is even, then in each ui with even i
we replace S and R with XSX and XRX , respectively, and leave ui with odd i
unchanged. Similarly, if the number of X’s in w1 is odd, then in each ui with
odd i we replace S and R with XSX and XRX , respectively, and leave ui with
even i unchanged. By construction, w2 ∼ w1 and w2 ∈ L(A2). Let w3 be the
word which is obtained from w2 after removing all appearances of XX . Then

12



w3 ∈ L(A3), w3 ∼ w2 ∼ w1 ∼ w and w3 is a canonical word. This idea is
illustrated by the following example. Suppose

w1 = SRXSXRRX .

Since the number of X’s in w1 is odd, the word w2 ∼ w1 has the form

w2 = (XSX )(XRX )XSX (XRX )(XRX )X

= XS (XX )R(XX )S(XX )R(XX )R(XX ).

The parentheses in the above expression are inserted only to visually separate
relevant subwords. After removing all occurrences of XX from w2 we obtain

w3 = XSRSRR ∼ w2,

which is a canonical word.
Let Can(A) be an automaton that recognizes the intersection L(A3)∩LCan,

where LCan is a regular language consisting of all canonical words. By definition
Can(A) accepts only canonical words. We need to show that Can(A) ∼ A. By
the above argument, for every w ∈ L(A), there is w3 ∈ L(A3) such that w3 ∼ w
and w3 ∈ LCan. Hence w3 ∈ L(Can(A)). So, ϕ(L(A)) ⊆ ϕ(L(Can(A))). On
the other hand,

ϕ(L(Can(A))) = ϕ(L(A3) ∩ LCan) ⊆ ϕ(L(A3)) = ϕ(L(A)).

Therefore, ϕ(L(Can(A))) = ϕ(L(A)) and hence Can(A) ∼ A.

Proposition 13. There is an algorithm that for any two regular languages
L1 and L2 over the alphabet Σ, decides whether ϕ(L1)∩ϕ(L2) is empty or not.

Proof. Let A1 and A2 be finite automata that recognize the languages L1 and
L2, respectively. Consider the automata Can(A1) and Can(A2). We have

ϕ(Li) = ϕ(L(Ai)) = ϕ(L(Can(Ai))) for i = 1, 2.

We show that ϕ(L1) ∩ ϕ(L2) 6= ∅ if and only if L(Can(A1)) ∩ L(Can(A2)) 6= ∅.
The statement of the proposition then follows from the fact that the emptiness
problem for regular languages is decidable.

Suppose there is w ∈ L(Can(A1)) ∩ L(Can(A2)). Then

ϕ(w) ∈ ϕ(L(Can(A1))) ∩ ϕ(L(Can(A2))) = ϕ(L1) ∩ ϕ(L2).

Hence ϕ(L1) ∩ ϕ(L2) is not empty.
Now assume there is M ∈ ϕ(L1)∩ϕ(L2) = ϕ(L(Can(A1)))∩ϕ(L(Can(A2))).

Hence there are words w1, w2 such that M = ϕ(wi) and wi ∈ L(Can(Ai)) for
i = 1, 2. Since Can(A1) and Can(A2) accept only canonical words, w1 and w2

must be canonical. By Theorem 11, there is only one canonical word w such
that M = ϕ(w). Hence w1 = w2 ∈ L(Can(A1)) ∩ L(Can(A2)).

13



We are ready to prove our main results.

Theorem 14. The vector reachability problem (VRP) and the reachability prob-
lem by fractional linear transformations (FLT) in SL(2,Z) are decidable.

Proof. Suppose M1, . . . ,Mn is a given finite collection of matrices from SL(2,Z).
Let w1, . . . , wn ∈ Σ∗ be canonical words such that Mi = ϕ(wi) for i = 1, . . . , n.
Let Lsemigr = {w1 ∪ · · · ∪ wn}∗. It is not hard to see that Lsemigr describes the
semigroup 〈M1, . . . ,Mn〉 in the sense that ϕ(Lsemigr ) = 〈M1, . . . ,Mn〉.

Recall that in the vector reachability problem we are given two integer vec-
tors x and y, and we ask if there is a matrix M ∈ 〈M1, . . . ,Mn〉 such that
Mx = y. We want to construct a regular language Lvrp

x,y that describes the
solution set of the equation Mx = y in SL(2,Z).

If x = 0 and y 6= 0 or if x 6= 0 and y = 0, then Lvrp
x,y = ∅ because in

these cases the equation Mx = y does not have a solution in SL(2,Z). On the
other hand, if x = y = 0, then Lvrp

x,y = Σ∗ because in this case any matrix
M ∈ SL(2,Z) satisfies the equation M0 = 0.

Now suppose that both x =

[
x1

x2

]
and y =

[
y1

y2

]
are nonzero integer vectors.

If gcd(x1, x2) 6= gcd(y1, y2), then my Lemma 5 the equation Mx = y has no
solution in SL(2,Z) and hence we define Lvrp

x,y = ∅.
Suppose that d = gcd(x1, x2) = gcd(y1, y2). Then by Corollary 8 all solu-

tions to Mx = y in SL(2,Z) are exactly {A( 1
dy)T tA( 1

dx)
−1

: t ∈ Z}. We can
rewrite it as a union

{A( 1
dy)T tA( 1

dx)
−1

: t ≥ 0}
⋃
{A( 1

dy)(T−1)
t
A( 1

dx)
−1

: t ≥ 0}.

Let u, v be canonical words such that ϕ(u) = A( 1
dy) and ϕ(v) = A( 1

dx)
−1

. It
is easy to check that T = ϕ(XSR) and T−1 = ϕ(XRRS ). Hence

Lvrp
x,y = u{XSR}∗v ∪ u{XRRS}∗v

is a regular language that describes all solutions to Mx = y in SL(2,Z).
Similarly, we can construct a regular language Lflt

x,y that corresponds to the
reachability problem by fractional linear transformations from x = x1

x2
to y = y1

y2
.

By Theorem 9, the set F(x, y) of matrices from SL(2,Z) that satisfy the equation

fM (x) = y is equal to F(x, y) = {±A(y1, y2)T tA(x1, x2)
−1

: t ∈ Z}.
Let u and v be canonical words such that ϕ(u) = A(y1, y2) and ϕ(v) =

A(x1, x2)
−1

. Then F(x, y) can be described by the following regular language

Lflt
x,y = u{XSR}∗v ∪ u{XRRS}∗v ∪Xu{XSR}∗v ∪Xu{XRRS}∗v.

Finally, the vector reachability problem from x to y has a solution if and
only if

ϕ(Lvrp
x,y) ∩ ϕ(Lsemigr ) 6= ∅.

Similarly, the reachability problem by fractional linear transformations from
x to y has a solution if and only if

ϕ(Lflt
x,y) ∩ ϕ(Lsemigr ) 6= ∅.
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By Proposition 13 these problems are algorithmically decidable.

Remark 1. In the definition of the vector reachability problem we consider
vectors x and y only with integer coefficients. However, the above theorem still
holds if we allow x and y to have rational coefficients. Indeed, the equation
Mx = y is equivalent to M(λx) = λy for any λ 6= 0. So if we multiply Mx = y
by the greatest common divisor of all coefficients, we can transform it to an
equivalent equation with integer coefficients.

Remark 2. Characterizations of the solution sets to the equations Mx = y
and fM (x) = y, which are given in Corollary 8 and Theorem 9, can be com-
puted in polynomial time. However the overall complexity of the algorithm is
in EXPTIME if the entries of the matrices are given in binary presentation.
This is due to the fact that a canonical word w that corresponds to a given
matrix M , i.e. such that M = ϕ(w), has length exponential in the binary pre-
sentation of M . So computing symbolic presentations of given matrices and
constructing automata for the languages Lsemigr , Lvrp

x,y and Lflt
x,y takes exponen-

tial time. The next steps of the algorithm take only polynomial time in the
size of these automata. However the PTIME algorithm for computing all ma-
trices M ∈ SL(2,Z) that satisfy Mx = y could be combined with the result
of Gurevich and Schupp [17] to produce a polynomial time algorithm for the
vector reachability problem over finitely generated subgroups of the modular
group PSL(2,Z).

In the rest of this section we will give some generalizations of the above
theorem.

Consider a semigroup generated by matrices M1, . . . ,Mn from SL(2,Z). As
we showed above, this semigroup can be described by a regular language which
we called Lsemigr . It’s not hard to see that the proof of Theorem 14 remains
valid if we replace Lsemigr by any other regular language, that is, a language
defined by an arbitrary finite automaton or a labelled transition system.

Proposition 15. Suppose that we are given a finite collection of matrices
M1, . . . ,Mn from SL(2,Z) and a regular language L ⊆ {1, . . . , n}∗. Consider
the following generalized reachability problems:

• Generalized vector reachability problem. Given two vectors x and
y with integer coefficients, decide whether there exists a word i1 . . . ik from
the language L such that Mi1 · · ·Mikx = y.

• Generalized reachability problem by fractional linear transfor-
mations. Given two rational numbers x and y, decide whether there
exists a word i1 . . . ik from L such that fMi1

···Mik
(x) = y.

Then the above generalized reachability problems are decidable.

Proof. The proof of this proposition is similar to the proof of Theorem 14.
Namely, it follows from the fact that a regular language L defines a regular
subset in SL(2,Z) and from Proposition 13, where we proved that the emptiness
problem for the intersection of two regular subsets in SL(2,Z) is decidable.
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As an application of Proposition 15 let us consider the follow matrix equation

Mx1
1 · · ·M

xk
k x = Ny1

1 · · ·N
y`
` y, (2)

where x1, . . . , xk and y1, . . . , y` are non-negative integers. In [31] it was proved
that if M1, . . . ,Mk and N1, . . . , N` are commuting n × n matrices over alge-
braic numbers and x,y are vectors with algebraic coefficients, then it is decid-
able in polynomial time whether Equation (2) has a solution. On the other
hand, in [37] it was shown that there is no algorithm for solving the equation
Mx1

1 · · ·M
xk
k = Z, where M1, . . . ,Mk are integer n×n matrices and Z is the zero

matrix. Using the construction of Kronecker (or tensor) product of matrices, it
is possible to show that the above-mentioned result implies that Equation (2)
is algorithmically undecidable in general for non-commuting integer matrices
M1, . . . ,Mk and N1, . . . , N`.

However using Proposition 15 we can algorithmically solve Equation (2) in
the case when M1, . . . ,Mk and N1, . . . , N` are matrices from SL(2,Z) and the
vectors x,y have integer coefficients. Indeed, since the matrices from SL(2,Z)
are invertible, we can rewrite (2) as

(N−1
` )

y` · · · (N−1
1 )

y1
Mx1

1 · · ·M
xk
k x = y.

It is not hard to see that

{(N−1
` )

y` · · · (N−1
1 )

y1
Mx1

1 · · ·M
xk
k : x1, . . . , xk, y1, . . . , yl ∈ N ∪ {0} }

is a regular subset of SL(2,Z). Hence this problem is decidable. Using the same
idea we can algorithmically solve Equation (2) also in the case when x1, . . . , xk
and y1, . . . , y` are arbitrary integers and the matrices are from SL(2,Z).

6. Decidability of the scalar reachability problem

Recall that the scalar reachability problem in SL(2,Z) is defined as follows:
Given two integer vectors x, z, an integer number λ, and a finite collection
of matrices M1, . . . ,Mn from SL(2,Z), decide whether there exists a matrix
M ∈ 〈M1, . . . ,Mn〉 that satisfies the equation

z>Mx = λ (3)

Theorem 16. The scalar reachability problem in SL(2,Z) is decidable.

Proof. The general idea of the proof is the same as in Theorem 14, that is, we
will show that the set of matrices M ∈ SL(2,Z) that satisfy Equation (3) can
be described by a regular language. The decidability of the scalar reachability
problem then follows from Proposition 13 in which we showed that the emptiness
problem for the intersection of two regular subsets in SL(2,Z) is decidable.

First, let us consider a geometric interpretation of this problem. We can
rewrite Equation (3) as a system of two equations:{

Mx = y

z>y = λ
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So, M satisfies Equation (3) if and only if it maps a given vector x to some
vector y that lies on the line L described by the equation z>y = λ. In other
words, we have a vector to line reachability problem from x to L.

Let x =

[
x1

x2

]
, y =

[
y1

y2

]
and z =

[
z1

z2

]
. The equation z>y = λ can be

written as z1y1 +z2y2 = λ. Note that if gcd(z1, z2) - λ, then this equation has no
solution. On the other hand, if gcd(z1, z2) | λ, then we can divide the equation
z1y1 + z2y2 = λ by gcd(z1, z2) and assume from now on that gcd(z1, z2) = 1.

Let u and v be the integers produced by the extended Euclidean algorithm
such that

z1u+ z2v = 1. (4)

Now it is not hard to see that all solutions of the equation z1y1 + z2y2 = λ have
the form

yk =

[
yk1
yk2

]
=

[
λu+ kz2

λv − kz1

]
, where k ∈ Z. (5)

Recall that by Lemma 5 if Mx = y, then gcd(x1, x2) = gcd(y1, y2). So we
are only interested in those k ∈ Z for which

gcd(yk1 , y
k
2 ) = gcd(x1, x2) (6)

To find all k ∈ Z that satisfy Equation (6), we will show that

gcd(yk1 , y
k
2 ) = gcd(k, λ) for all k ∈ Z. (7)

Indeed, let d ∈ Z be such that d | k and d | λ, then from (5) it follows that
d | yk1 and d | yk2 . Conversely, if d | yk1 and d | yk2 , then from (4) and (5) we have
that d | z1y

k
1 + z2y

k
2 = λ(z1u+ z2v) = λ and d | yk1v − yk2u = k(z2v + z1u) = k.

So, Equation (6) becomes equivalent to

gcd(k, λ) = gcd(x1, x2) (8)

Note that if k ≡ k′ (mod λ), then gcd(k, λ) = gcd(k′, λ). Therefore, we can
describe all solutions of the Equation (8), and hence of (6), as follows

{k + tλ : k ∈ X and t ∈ Z},

where
X = {k : 0 ≤ k ≤ λ− 1 and gcd(k, λ) = gcd(x1, x2) }.

Note that X is a finite set which can be algorithmically computed by trying all
k ∈ {0, . . . , λ− 1}.

So, we have the following equivalence: a matrix M ∈ SL(2,Z) satisfies the
equation z>Mx = λ if and only if there exist k ∈ X and t ∈ Z such that
Mx = yk+tλ.

Let us fix k ∈ X and consider the equation Mx = yk+tλ. By Corollary 8,
all its solutions in SL(2,Z) are exactly

{A( 1
dyk+tλ)T `A( 1

dx)
−1

: ` ∈ Z}, where d = gcd(x1, x2).
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We will now explicitly compute the matrix A( 1
dyk+tλ). Note that since

k ∈ X, we have gcd(k, λ) = gcd(x1, x2) = d. Let uk and vk be the integers
produced by the extended Euclidean algorithm such that

kuk + λvk = gcd(k, λ) = gcd(x1, x2) = d. (9)

From (7) we obtain that for every t ∈ Z,

gcd(yk+tλ
1 , yk+tλ

2 ) = gcd(k + tλ, λ) = gcd(k, λ) = gcd(x1, x2) = d.

Our goal now is to find integer numbers uk,t and vk,t such that

yk+tλ
1 uk,t + yk+tλ

2 vk,t = d. (10)

Since yk+tλ
1 = λu + (k + tλ)z2 and yk+tλ

2 = λv − (k + tλ)z1, we can rewrite
Equation (10) as

(λu+ kz2 + tλz2)uk,t + (λv − kz1 − tλz1)vk,t = d or as

k(z2uk,t − z1vk,t) + λ((u+ tz2)uk,t + (v − tz1)vk,t) = d

On the other hand, Equation (9) states that kuk + λvk = d. Hence, to find the
desired uk,t and vk,t, we need to solve the system of equations:{

z2uk,t − z1vk,t = uk

(u+ tz2)uk,t + (v − tz1)vk,t = vk

In matrix form it looks like[
z2 −z1

u+ tz2 v − tz1

] [
uk,t
vk,t

]
=

[
uk
vk

]

From Equation (4) we obtain that det

[
z2 −z1

u+ tz2 v − tz1

]
= z2v + z1u = 1. So

[
uk,t
vk,t

]
=

[
z2 −z1

u+ tz2 v − tz1

]−1 [
uk
vk

]
=

[
v − tz1 z1

−(u+ tz2) z2

] [
uk
vk

]
Thus uk,t = (v − tz1)uk + z1vk and vk,t = −(u + tz2)uk + z2vk. Therefore,

the matrix A( 1
dyk+tλ) can we expressed as follows

A( 1
dyk+tλ) =

[
1
dy

k+tλ
1 −vk,t

1
dy

k+tλ
2 uk,t

]
=

[
λ
du+ k

dz2 + tλd z2 uuk + tz2uk − z2vk
λ
d v −

k
dz1 − tλd z1 vuk − tz1uk + z1vk

]
=

[
λ
du+ k

dz2 uuk − z2vk
λ
d v −

k
dz1 vuk + z1vk

]
+ t

[
λ
d z2 z2uk
−λd z1 −z1uk

]
The first matrix in the above sum can be expressed as follows[

λ
du+ k

dz2 uuk − z2vk
λ
d v −

k
dz1 vuk + z1vk

]
=

[
z2 u
−z1 v

] [
k
d −vk
λ
d uk

]
= A(z2,−z1)A(kd ,

λ
d )

18



The second matrix can be written as

[
λ
d z2 z2uk
−λd z1 −z1uk

]
=

[
z2

−z1

]
[λd , uk]. Note

that A(z2,−z1)e1 =

[
z2

−z1

]
and e>2 A(kd ,

λ
d ) = [0, 1]

[
k
d −vk
λ
d uk

]
= [λd , uk]. Hence

A( 1
dyk+tλ) = A(z2,−z1)A(kd ,

λ
d ) + tA(z2,−z1)e1e

>
2 A(kd ,

λ
d )

= A(z2,−z1)(I + te1e
>
2 )A(kd ,

λ
d )

= A(z2,−z1)

([
1 0
0 1

]
+

[
0 t
0 0

])
A(kd ,

λ
d )

= A(z2,−z1)

[
1 t
0 1

]
A(kd ,

λ
d ) = A(z2,−z1)T tA(kd ,

λ
d )

Therefore, all solutions of the equation z>Mx = λ in SL(2,Z) are exactly

{A(z2,−z1)T tA(kd ,
λ
d )T `A(x1

d ,
x2

d )
−1

: where k ∈ X and t, ` ∈ Z}.

It is now not hard to see that this solution set can be described by a regular
language. Therefore, the scalar reachability problem in SL(2,Z) is decidable.

The above solution has the following geometric interpretation: first, x is

mapped by A(x1

d ,
x2

d )
−1

to

[
d
0

]
, which is mapped to itself by T `. Next A(kd ,

λ
d )

maps

[
d
0

]
to

[
k
λ

]
, and then T t maps

[
k
λ

]
to

[
k + tλ
λ

]
. Finally A(z2,−z1) maps[

k + tλ
λ

]
to yk+tλ ∈ L. Figure 4 gives an illustration of these transformations.

In fact, it is easy to see that A(z2,−z1) maps the dashed line that passes through

the vectors

[
k
λ

]
and

[
k + tλ
λ

]
onto the line L defined by the equation z>y = λ.

x

yk+tλ

(d, 0)

(k, λ)(k + tλ, λ)

L

A−1
1

A3

A2

T `

T t

Figure 4: Geometric interpretation of the transformation yk+tλ = A3T tA2T `A
−1
1 (x), where

A1 = A(x1
d
, x2
d
), A2 = A( k

d
, λ
d
) and A3 = A(z2,−z1).
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and Hilbert’s tenth problem, Internat. J. Algebra Comput. 18 (8) (2008)
1231–1241.

23


	Introduction
	Preliminaries
	Overview of the main results
	Solutions of the equations Mx=y and fM(x)=y in SL(2,Z)
	Decidability of VRP and FLT
	Decidability of the scalar reachability problem

