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Abstract
We study the emptiness and λ-reachability problems for unary and binary Probabilistic Finite
Automata (PFA) and characterise the complexity of these problems in terms of the degree of
ambiguity of the automaton and the size of its alphabet. Our main result is that emptiness and
λ-reachability are solvable in EXPTIME for polynomially ambiguous unary PFA and if, in addition,
the transition matrix is over {0, 1}, we show they are in NP. In contrast to the Skolem-hardness
of the λ-reachability and emptiness problems for exponentially ambiguous unary PFA, we show
that these problems are NP-hard even for finitely ambiguous unary PFA. For binary polynomially
ambiguous PFA with commuting transition matrices, we prove NP-hardness of the λ-reachability
(dimension 9), nonstrict emptiness (dimension 37) and strict emptiness (dimension 40) problems.
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1 Introduction

There are many possible extensions of the fundamental notion of a nondeterministic finite
automaton. One such notion is that of a Probabilistic Finite Automata (PFA) which was
first introduced by Rabin [19]. In a PFA P over a (finite) input alphabet Σ the outgoing
transitions from a state, for each input letter of Σ, form a probability distribution, as does
the initial state vector. Thus, a word w ∈ Σ∗ is accepted with a certain probability, which
we denote P(w).

There are a variety of interesting questions that one may ask about a PFA P over an
alphabet Σ. In this article we focus on two decision questions, that of λ-reachability and
emptiness. The λ-reachability problem is stated thus: given a probability λ ∈ [0, 1], does
there exist some word w ∈ Σ∗ such that P(w) = λ? In the (strict) emptiness problem, we
ask if there exists any word w ∈ Σ∗ such that P (w) ≥ λ (resp. P (w) > λ). We also mention
the related cutpoint isolation problem – to determine if for each ϵ > 0, there exists a word
w ∈ Σ such that |P(w) − λ| < ϵ.

In general, the emptiness problem is undecidable for PFA [18], even over a binary alphabet
when the automaton has 25 states [12]. The cutpoint isolation problem is undecidable [4]
even for PFA with 420 states over a binary alphabet [5]. The problem is especially interesting
given the seminal result of Rabin that if a cutpoint λ is isolated, then the cutpoint language
associated with λ is necessarily regular [19].

We may ask which restrictions of PFA may lead to decidability of the previous problems.
In this paper we are interested in PFA of bounded ambiguity, where the ambiguity of a word
denotes the number of accepting runs of that word in the PFA. A PFA P is f -ambiguous,
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15:2 Decision Questions for Probabilistic Automata on Small Alphabets

for a function f : N → N, if every word of length n has at most f(n) accepting runs. A run
is accepting if the probability of that run ending in a final state is strictly positive. The
degree of ambiguity is thus a property of the NFA underlying a PFA (i.e. the NFA produced
by setting all nonzero transition probabilities to 1). We may consider the notions of finite,
polynomial or exponential ambiguity of P based on whether f is bounded by a constant, is a
polynomial or else is exponential, respectively. Characterisations of the degree of ambiguity
of NFA are given by Weber and Seidel [23].

The authors of [8] show that emptiness for PFA remains undecidable even for polynomially
ambiguous automata (quadratic ambiguity), show PSPACE-hardness results for finitely
ambiguous PFA and that emptiness is in NP for the class of k-ambiguous PFA for every
k > 0. The emptiness problem for PFA was later shown to be undecidable for linearly
ambiguous automata [7].

Another restriction is to constrain input words of the PFA to come from a given language L.
If L is a letter-bounded language, then the emptiness and λ-reachability problems remain
undecidable for polynomially ambiguous PFA, even when all transition matrices commute [2].
In contrast, the cutpoint-isolation problem is decidable even for exponentially ambiguous
PFA when inputs are constrained to come from a given letter-bounded context-free language,
although it is NP-hard for 3-state PFA on letter-bounded inputs [3].

Our main results are as follows. We show that the λ-reachability and emptiness problems
for probabilistic finite automata are:

In EXPTIME for the class of polynomially ambiguous unary PFA and are NP-complete
if, in addition, the transition matrix is over {0, 1} [Theorem 4 and Corollary 11].
NP-hard for polynomially ambiguous PFA over a binary alphabet with fixed and com-
muting transition matrices of dimension 40 (strict emptiness problem), 37 (nonstrict
emptiness problem) and 9 (λ-reachability problem) [Theorem 12].

We also show NP-hardness for the class of finitely ambiguous unary PFA with {0, 1}
transition matrix [Theorem 10]. Our hardness results rely on the NP-hardness of solving
binary quadratic equations and the universality problem for unary regular expressions. An
interesting question, that is left open, is to find out the exact computational complexity of
the above problems in the case of polynomially ambiguous unary PFA, i.e. to close the gap
between the EXPTIME upper bound and NP lower bound.

2 Probabilistic Finite Automata and Notation

We denote by Qn×n the set of all n× n matrices over Q. Given two column vectors u ∈ Qn

and v ∈ Qm, we denote by [u|v] the column vector (u1, . . . , un, v1, . . . , vm)T ∈ Qn+m. For a
sequence of vectors u1, u2, . . . , uk, we write [u1|u2| · · · |uk] for the column vector which stacks
the vectors on top of each other.

Given A = (aij) ∈ Qm×m and B ∈ Qn×n, we define the direct sum A⊕B and Kronecker
product A⊗B of A and B by:

A⊕B =
[
A 0m,n

0n,m B

]
, A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
...

am1B am2B · · · ammB

 ,
where 0i,j denotes the zero matrix of dimension i × j. Note that neither ⊕ nor ⊗ are
commutative in general. The following useful properties of ⊕ and ⊗ are well known.
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▶ Lemma 1. Let A,B,C,D ∈ Qn×n. Then we have:
Associativity: (A⊗B)⊗C = A⊗(B⊗C) and (A⊕B)⊕C = A⊕(B⊕C), thus A⊗B⊗C

and A⊕B ⊕ C are unambiguous.
Mixed product properties: (A⊗B)(C⊗D) = (AC⊗BD) and (A⊕B)(C⊕D) = (AC⊕BD).
If A and B are stochastic matrices, then so are A⊕B and A⊗B.
If A,B ∈ Qn×n are both upper-triangular, then so are A⊕B and A⊗B.

See [13] for proofs of the first three properties of Lemma 1. The fourth property follows
directly from the definition of the direct sum and Kronecker product and is not difficult to
prove.

A Probabilistic Finite Automaton (PFA) P with n states over an alphabet Σ is defined
as P = (u, {Ma|a ∈ Σ}, v) where u ∈ Qn is the initial probability distribution; v ∈ {0, 1}n is
the final state vector and each Ma ∈ Qn×n is a (row) stochastic matrix. We will primarily
be interested in unary and binary PFA, for which |Σ| = 1 and |Σ| = 2 respectively. For a
word w = a1a2 · · · ak ∈ Σ∗, we define the acceptance probability P(w) : Σ∗ → Q of P as:

P(w) = uTMa1Ma2 · · ·Mak
v ∈ [0, 1],

which denotes the acceptance probability of w.1
For a given cutpoint λ ∈ [0, 1], we define the following languages: L≥λ(P) = {w ∈

Σ∗ | P(w) ≥ λ}, a nonstrict cutpoint language, and L>λ(P) = {w ∈ Σ∗ | P(w) > λ}, a strict
cutpoint language. The (strict) emptiness problem for a cutpoint language is to determine if
L≥λ(P) = ∅ (resp. L>λ(P) = ∅). We are also interested in the λ-reachability problem, for
which we ask if there exists a word w ∈ Σ∗ such that P(w) = λ.

2.1 PFA Ambiguity
The degree of ambiguity of a finite automaton is a structural parameter, roughly indicating
the number of accepting runs for a given input word. See [23] for a thorough discussion of
ambiguity for nondeterministic automata and [2, 3, 7, 8] for connections to PFA.

Let w ∈ Σ∗ be an input word of an NFA N = (Q,Σ, δ, QI , QF ), with Q the set of states,
Σ the input alphabet, δ ⊂ Q × Σ × Q the transition function, QI the set of initial states
and QF the set of final states. For each (p, w, q) ∈ Q× Σ∗ ×Q, define daN (p, w, q) as the
number of paths for w in N leading from state p to q. The degree of ambiguity of w in N ,
denoted daN (w), is defined as the number of all accepting paths for w (starting from an
initial and ending in a final state). The degree of ambiguity of N , denoted da(N ), is the
supremum of the set {daN (w) | w ∈ Σ∗}. N is called infinitely ambiguous if da(N ) = ∞,
finitely ambiguous if da(N ) < ∞, and unambiguous if da(N ) ≤ 1. The degree of growth
of the ambiguity of N , denoted deg(N ), is defined as the minimum degree of a univariate
polynomial h with positive integral coefficients such that for all w ∈ Σ∗, daN (w) ≤ h(|w|) (if
such a polynomial exists, in which case N is called polynomially ambiguous, otherwise the
degree of growth is infinite and N is called exponentially ambiguous).

The above notions relate to NFA. We may derive an analogous notion of ambiguity for
PFA by considering an embedding of a PFA P to an NFA N in such a way that for each
letter a ∈ Σ, if the probability of transitioning from a state i to state j is nonzero under P,
then there is an edge from state i to j under N for letter a. The initial states of N are those
of P having nonzero initial probability and the final states of N and P coincide. We then
say that P is finitely/polynomially/exponentially ambiguous if N is (respectively).

1 Some authors interchange the order of u and v and use column stochastic matrices, although the two
definitions are trivially equivalent.
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A state q ∈ Q in an NFA (resp. PFA) is called useful if there exists an accepting
path which visits q (resp. an accepting path of nonzero probability which visits q). We
can characterise whether an NFA A (and thus a PFA by the above embedding) has finite,
polynomial or exponential ambiguity using the following properties:
EDA – There is a useful state q ∈ Q such that, for some word v ∈ Σ∗, daA(q, v, q) ≥ 2.
IDAd – There are useful states r1, s1, . . . , rd, sd ∈ Q and words v1, u2, v2, . . . , ud, vd ∈ Σ∗

such that for all 1 ≤ i ≤ d, ri and si are distinct and (ri, vi, ri), (ri, vi, si), (si, vi, si) ∈ δ and
for all 2 ≤ i ≤ d, (si−1, ui, ri) ∈ δ.

▶ Theorem 2 ( [14, 20, 23]). An NFA (or PFA) A having the EDA property is equivalent to
it being exponentially ambiguous. For any d ∈ N, an NFA (or PFA) A having property IDAd

is equivalent to deg(A) ≥ d.

Clearly, if N agrees with IDAd for some d > 0, then it also agrees with IDA1, . . . , IDAd−1.
An NFA (or PFA) is thus finitely ambiguous if it does not possess property IDA1.

3 Unary PFA

Our main focus is on unary automata. We begin by giving a simple folklore proof that the
λ-reachability and emptiness problems are as computationally difficult as the famous Skolem
problem, which is only know to be decidable for instances of depth 4 [22]. See also [1] for
connections to reachability problems for Markov chains.

▶ Theorem 3. The λ-reachability and emptiness problems for unary exponentially ambiguous
Probabilistic Finite Automata are Skolem-hard.

Proof. (Folklore). The λ-reachability problem for unary exponentially ambiguous PFA can
be shown Skolem-hard based on the well known matrix formulation of Skolem’s problem [11]
and Turakainen’s technique showing the equivalence of (strict) cutpoint language acceptance
of generalised automata and exponentially ambiguous probabilistic automata [21].

The emptiness problem can be shown Skolem-hard by encoding the positivity problem
which is known to be Skolem-hard, see [17] for example. ◀

We now move to prove our main result, specifically that the emptiness and λ-reachability
problems for polynomially ambiguous unary probabilistic finite automata are in EXPTIME.
Note again that without the restriction of polynomial ambiguity the problem is Skolem-hard
by Theorem 3 and thus not even known to be decidable.

▶ Theorem 4. The λ-reachability and (strict) emptiness problems for unary polynomially
ambiguous Probabilistic Finite Automata are decidable in EXPTIME.

In order to establish Theorem 4, we need to prove a series of lemmas.
The next lemma states that we may consider a unary polynomially ambiguous PFA whose

transition matrix is upper-triangular. This will prove useful since in that case the eigenvalues
of the transition matrix are rational nonnegative. In general, a polynomially ambiguous
unary PFA may have a transition matrix with complex eigenvalues. The proof of the lemma
relies on the analysis of strongly connected components (SCCs) of the underlying transition
graph of a PFA.
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▶ Lemma 5. Let P = (u,A, v) be a polynomially ambiguous unary Probabilistic Finite
Automaton with acceptance function P(ak) = uTAkv. Then we can compute in EXPTIME
a set of d polynomially ambiguous unary PFAs {Ps = (us, U, v

′) | 0 ≤ s ≤ d − 1} such
that U is rational upper-triangular and P(ak) = Ps(ar) = uT

s U
rv′, where k = rd + s with

0 ≤ s ≤ d− 1.

Proof. We will identify P and its underlying graph in which an edge (p, q) exists iff Ap,q ̸= 0.
Two states p, q of a PFA are said to be connected if there exists a path from p to q and
from q to p. We partition the set of states into Strongly Connected Components (SCC)
denoted S1, S2, . . . , Sℓ so that for any SCC Sj , either |Sj | = 1, or else any two states in Sj

are connected. These SCCs can be computed in linear time.
A polynomially ambiguous PFA does not have the EDA property (see Sec. 2.1). This

implies that every Sj , with |Sj | > 1, consists of a single directed cycle, possibly with
transitions to other SCCs. To see this, suppose there are two different directed cycles inside
Sj of lengths m and n and a common vertex p. Then one can construct two different paths
of length mn from p to p by going m times along the first cycle and n time along the second
cycle, respectively, contradicting the assumption that P does not have the EDA property.

Note that if there exists a path from a state p ∈ Sj1 to some q ∈ Sj2 , then there does not
exist any path from any state in Sj2 to a state in Sj1 , otherwise Sj1 and Sj2 would merge
to a single SCC (since all vertices are then connected). This implies that the connected
components S1, S2, . . . , Sℓ can be reordered in such a way that there are no transitions from
Sj to Si for i < j. Hence there exists a permutation matrix P such that the following matrix
is stochastic block upper-triangular:

B = PAP−1 =


B1 ∗ · · · ∗

0 B2
. . . ∗

...
. . . . . .

...
0 0 · · · Bℓ

 ,

such that each Bj ∈ Qdj×dj , where dj is the size of Sj , and Bj ⪯ Pj , where Pj ∈ Ndj×dj

is a permutation matrix, and the entries ∗ are arbitrary. Here M ⪯ N means that M is
entrywise less than N , i.e. Mi,j ≤ Ni,j .

Let d = lcm{dj | 1 ≤ j ≤ ℓ} (in fact, we can simply take d =
∏ℓ

j=1 dj). We then see that:

U := Bd = PAdP−1 =


Bd

1 ∗ · · · ∗

0 Bd
2

. . . ∗
...

. . . . . .
...

0 0 · · · Bd
ℓ

 .

Note that each Bd
j ⪯ P d

j = Ij , where Ij ∈ Ndj×dj is the identity matrix, and the entries ∗
are arbitrary. Therefore, each Bd

j is diagonal, and so U is clearly upper-triangular.
We then define Ps = (us, U, v

′), for 0 ≤ s ≤ d − 1, with uT
s = uTAsP−1 and v′ = Pv

noting that Pv is a binary vector as required of a final state vector. We now see that:

P(ak) = uTAkv = uTAsArdv = uTAsP−1(PArdP−1)Pv = uT
s U

rv′ = Ps(ar)

for k = rd+ s with 0 ≤ s ≤ d− 1 as required. Here we used the identity Ur = PArdP−1.
Finally, note that d can be exponential in the number of states of P, which in turn

is bounded by the input size. Hence computing U and all us, for 0 ≤ s ≤ d − 1, takes
exponential time. ◀

MFCS 2021
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The next lemma gives us an efficient method to compute an explicit formula for the
acceptance probability function of a unary PFA with upper-triangular transition matrix.

▶ Lemma 6. Let P = (u,A, v) be a unary probabilistic finite automaton such that A is
rational upper-triangular, and let λ0 = 1 > λ1 > · · · > λm ≥ 0 be distinct eigenvalues of A.
Then there exist a constant c ∈ Q and univariate polynomials p1, . . . , pm over Q, all of which
can be computed in polynomial time, such that

P(ak) = c+
m∑

i=1
pi(k)λk

i .

Proof. First, we write A in Jordan normal form A = S−1JS, where S is a nonsingular
(det(S) ̸= 0) matrix consisting of the generalised eigenvectors of A. Recall that A is a rational
upper-triangular matrix. It follows that J and S must have rational entries. Moreover, to
compute J and S, we need to solve systems of linear equations over Q, which can be done
in polynomial time. Computing S−1 also requires polynomial time. Matrix J has the form
J =

⊕m
i=0

⊕ni

j=1 Jℓi,j (λi), where Jℓi,j (λi) is a ℓi,j × ℓi,j Jordan block and ni is the geometric
multiplicity of λi (hence

∑ni

j=1 ℓi,j is the algebraic multiplicity of λi). Recall that a Jordan
block Jℓ(λ) of size ℓ× ℓ that corresponds to an eigenvalue λ has the form:

Jℓ(λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ

 ∈ Qℓ×ℓ.

Noting that
(

x
y

)
= 0 if y > x, we see that

Jℓ(λ)k =


λk

(
k
1
)
λk−1 (

k
2
)
λk−2 · · ·

(
k

ℓ−1
)
λk−(ℓ−1)

0 λk
(

k
1
)
λk−1 · · ·

(
k

ℓ−2
)
λk−(ℓ−2)

0 0 λk · · ·
(

k
ℓ−3

)
λk−(ℓ−3)

...
...

...
. . .

...
0 0 0 · · · λk

 . (1)

Note that the entries of Jℓ(λ)k have the form qi,j(k)λk, where qi,j(k) are polynomials over Q
that can be computed in polynomial time. Namely, qi,i+p(k) =

(
k
p

)
λ−p for 0 ≤ p ≤ ℓ− i, and

qi,j(k) = 0 for i > j. Note that even though p appears in the exponent of λ−p and as p! in(
k
p

)
, these values are still computable in PTIME from the input data because p is bounded

by the dimension of the matrix, which in turn is bounded by the input size.
Next, we note that Jk =

⊕m
i=0

⊕ni

j=1 Jℓi,j
(λi)k. Hence the entries of Jk have the form

ps,t(k)λk
i , where ps,t(k) are polynomials over Q. So we can write the function P(ak) as

follows:

P(ak) = uTAkv = (uTS−1)Jk(Sv).

Note that in the above equation, uTS−1 and Sv are rational vectors. It follows that

P(ak) =
m∑

i=0
pi(k)λk

i
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for some polynomials pi(k) over Q. In fact, these polynomials are rational linear combinations
of those ps,t(k) that multiply λk

i in the expression for Jk, and so they can be computed in
polynomial time.

Finally, recall that λ0 = 1 and note that the Jordan blocks that correspond to the
dominant eigenvalues of a stochastic matrix have size 1 × 1 (for the proof of this fact see,
e.g. [9, Theorem 6.5.3]). It follows from (1) that the terms λk

0 in the formula for Jk are
multiplied by constant polynomials ps,t(k) = 1. Hence p0(k) = c for some constant c ∈ Q. ◀

The next technical lemma is crucial in our later analysis of the running time of the
algorithms for the emptiness and λ-reachability problems presented in Lemmas 8 and 9.

▶ Lemma 7. Let D ∈ R be such that lnD > 2. Then for all x > 3D lnD, we have D ln x < x.

Proof. Our goal is to find x0 > 0 such that every x > x0 satisfies D ln x < x. First, let us
make a substitution x = Dt, where t > 1. Then we can rewrite D ln x < x as follows

D ln(Dt) < Dt,

ln t+ lnD < t.

We want to find t0 > 1 such that every t > t0 satisfies ln t+ lnD < t. Let us make another
substitution t = lnD + u ln lnD, where u > 0. Then we can write the previous inequality as

ln(lnD + u ln lnD) + lnD < lnD + u ln lnD,

ln
(

lnD
(

1 + u
ln lnD
lnD

))
< u ln lnD,

ln lnD + ln
(

1 + u
ln lnD
lnD

)
< u ln lnD. (2)

So we need to find u0 > 0 such that for all u > u0, the inequality (2) holds. In order to do this,
we can replace the left-hand side of (2) with a larger value using ln

(
1 + u ln ln R

ln R

)
< u ln ln R

ln R .
Thus we obtain

ln lnD + u
ln lnD
lnD < u ln lnD,

1 + u

lnD < u, lnD + u < u lnD, lnD
lnD − 1 < u.

Recall that by our assumption lnD > 2. In this case, ln D
ln D−1 < 2, and hence we can choose

u0 = 2. This gives us the values t0 = lnD + u0 ln lnD = lnD + 2 ln lnD and x0 = Dt0 =
D(lnD + 2 ln lnD). Since ln lnD < lnD, we can choose x0 to be x0 = 3D lnD. ◀

We now proceed to the proof of our main result. We split the analysis into two cases
depending on whether or not the cutpoint λ coincides with the limit limk→∞ P(ak), which is
unique by Lemma 6.

▶ Lemma 8. Let P = (u,A, v) be a unary probabilistic finite automaton such that A is rational
upper-triangular, and let λ ∈ [0, 1] ∩ Q be a cutpoint. Assuming that λ ̸= limk→∞ P(ak), the
(strict) emptiness and λ-reachability problems for P and λ are decidable in EXPTIME.

Proof. By Lemma 6, we can write P(ak) = c +
∑m

i=1 pi(k)λk
i , where 1 > λ1 > · · · > λm

are the eigenvalues of A and c and the coefficients of pi are rational numbers that can be
computed in polynomial time. By assumption, limk→∞ P(ak) = c ̸= λ. Let ϵ = |c−λ|

2 . We
now determine a natural number k0 > 0 such that P(ak) ∈ (c− ϵ, c+ ϵ) for all k > k0.

MFCS 2021



15:8 Decision Questions for Probabilistic Automata on Small Alphabets

Let each pi(k) have the form pi(k) = ai,sk
s + ai,s−1k

s−1 + · · · + ai,0, where s ≤ n is the
size of the largest Jordan block in the Jordan normal form of A (we do not assume here that
ai,s ̸= 0). Then for all k > 0 we have∣∣∣∣∣

m∑
i=1

pi(k)λk
i

∣∣∣∣∣ ≤ λk
1

m∑
i=1

|pi(k)| ≤ λk
1k

s
m∑

i=1

s∑
j=0

|ai,j | = d ksλk
1 ,

where d =
∑m

i=1
∑s

j=0 |ai,j | ∈ Q can be computed in polynomial time by Lemma 6.
Let k1 > 0 be a number to be defined later such that for all k > k1,

ks <

(
1√
λ1

)k

= λ
− k

2
1 .

Then for all k > k1, we have d ksλk
1 < dλ

k
2
1 . Thus we need to find k0 ≥ k1 such that for all

k > k0, we have λ
k
2
1 < ϵ/d. Note that if ϵ/d ≥ 1, then we can take k0 = k1. Hence we assume

that ϵ/d < 1.
The inequality λ

k
2
1 < ϵ/d is equivalent to k lnλ1 < 2 ln(ϵ/d). Since lnλ1 < 0, the previous

inequality is equivalent to

k >
2 ln(ϵ/d)

lnλ1
= 2 ln(d/ϵ)

− lnλ1
. (3)

To determine k0, we need an upper bound on the right-hand side of (3). We will use the
fact that for any rational r > 1, ln r < log2 r ≤ log2⌈r⌉ < bins(⌈r⌉), where bins(n) is the size
of the binary representation of n. Thus bins(⌈r⌉) gives a polynomially computable integer
upper bound for ln r.

Next, using the fact that ln(1 + x) < x for x ̸= 0, we obtain

lnλ1 = ln(1 + (λ1 − 1)) < λ1 − 1,

which gives − lnλ1 > 1 − λ1. Hence a polynomially computable upper bound on the
right-hand side of (3) is

2 ln(d/ϵ)
− lnλ1

<
2 bins(⌈d/ϵ⌉)

1 − λ1
. (4)

Next we compute a value k1 such that for all k > k1:

ks < λ
− k

2
1 or, equivalently, C ln k < k, (5)

where C = 2s
− lnλ1

. Using the fact that ln(1 + x) < x for x ≠ 0, we obtain C <
2s

1 − λ1
.

Hence in order to find k1, we can replace C in (5) with D = 2s
1 − λ1

. In addition, we can
assume that lnD > 2, since otherwise we can replace D with a larger value that satisfies
this condition, e.g. with D = 9. Now, Lemma 7 implies that every k > 3D lnD satisfies
D ln k < k. To make this value polynomially computable, we can choose it to be

k1 = 3⌈D⌉bins(⌈D⌉), where D = max
{

2s
1 − λ1

, 9
}
.

Finally, combining the right-hand side of (4) with the above formula, we can define
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k0 = max
{

2 bins(⌈d/ϵ⌉)
1 − λ1

, 3⌈D⌉bins(⌈D⌉)
}
.

Note that all the values that appear in the above formula, e.g. ϵ, d and D, can be computed
in polynomial time from the input data.

At this point we have derived a polynomially computable k0 such that P(ak) = uTAkv ∈
(c− ϵ, c+ ϵ) and, in particular, P(ak) ̸= λ for all k > k0. Now, to decide the λ-reachability
problem, we need to check for each integer k ∈ [0, k0] whether uTAkv = λ. Note that
the number of integers in [0, k0] is equal to 2bins(k0), which is exponential in the instance
size. Also, computing Ak for a given k ∈ [0, k0] takes exponential time because bins(Ak) =
O(2bins(k0)bins(A)). So, the overall algorithm is in EXPTIME.

In a similar way, we can decide the (strict) emptiness problem in EXPTIME. For instance,
suppose λ > c. Then for all k > k0, we have P(ak) < c+ ϵ < λ. Thus deciding whether there
exists k such that P(ak) < λ is trivial. Suppose we want to know if there exists k such that
P(ak) ≥ λ. In this case, we need to check for each integer k ∈ [0, k0] whether uTAkv ≥ λ.
By the same argument as before, this can be done in EXPTIME. ◀

▶ Lemma 9. Let P = (u,A, v) be a unary polynomially ambiguous probabilistic finite
automaton such that A is upper-triangular and let λ ∈ [0, 1] ∩ Q be a cutpoint. Assuming
that λ = limk→∞ P(ak), the (strict) emptiness and λ-reachability problems for P and λ are
decidable in EXPTIME.

Proof. Recall that by Lemma 6, we can write P(ak) = c+
∑m

i=1 pi(k)λk
i , where 1 > λ1 >

· · · > λm are the eigenvalues of A and c and the coefficients of pi are rational numbers
computable in polynomial time. By our assumption, λ = limk→∞ P(ak) = c. As before, let
each pi(k) have the form pi(k) = ai,sk

s + ai,s−1k
s−1 + · · · + ai,0, where s ≤ n (we do not

assume here that ai,s ̸= 0).
In addition, assume that the leading coefficient of p1(k) is a1,t, for some t ≤ s. Without

loss of generality, suppose a1,t > 0; the case when a1,t < 0 is similar. First, we compute k0
such that p1(k) > 1

2a1,tk
t for all k > k0. To do this, we will use the following inequalities:

a1,tk
t + a1,t−1k

t−1 + · · · + a1,0 >
1
2a1,tk

t ⇐⇒ 1
2a1,tk

t + a1,t−1k
t−1 + · · · + a1,0 > 0

and |a1,t−1k
t−1 + · · · + a1,0| ≤ kt−1(|a1,t−1| + · · · + |a1,0|) = kt−1

t−1∑
j=0

|a1,j | if k ≥ 1.

So, the inequality p1(k) > 1
2a1,tk

t follows from 1
2a1,tk

t > kt−1 ∑t−1
j=0 |a1,j |, which is equivalent

to k > 2
a1,t

∑t−1
j=0 |a1,j |. Therefore, we conclude that

p1(k) > 1
2a1,tk

t for all k such that k > k0 := max

1, 2
a1,t

t−1∑
j=0

|a1,j |

 . (6)

Now we want to find k1 ≥ k0 such that for all k > k1, we have

λk
1p1(k) + λk

2p2(k) + · · · + λk
mpm(k) > 0. (7)

Note that

|λk
2p2(k) + · · · + λk

mpm(k)| ≤ λk
2(|p2(k)| + · · · + |pm(k)|) ≤ dksλk

2 , (8)

where d =
∑m

i=2
∑s

j=0 |ai.j |. Using (6) and (8), we see that (7) holds whenever k > k0 and
dksλk

2 <
1
2a1,tk

tλk
1 , which is equivalent to
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2dks−t

a1,t
<

(
λ1

λ2

)k

or ln 2d
a1,t

+ (s− t) ln k < k ln λ1

λ2

1
lnλ1/λ2

(
ln 2d
a1,t

+ (s− t) ln k
)
< k. (9)

We will use the following inequality

ln λ1

λ2
= − ln λ2

λ1
= − ln

(
1 + λ2 − λ1

λ1

)
> −λ2 − λ1

λ1
> λ1 − λ2.

Then we can replace (9) with a stronger inequality

1
λ1 − λ2

(
ln 2d
a1,t

+ (s− t) ln k
)
< k. (10)

In the following, we will assume t < s since otherwise (10) simplifies to 1
λ1−λ2

ln 2d
a1,t

< k.

Let us make the substitution k = t
(

2d
a1,t

)− 1
s−t , where t > 0. Then (10) can be written as

1
λ1 − λ2

(
ln 2d
a1,t

+ (s− t) ln t+ (s− t) −1
s− t

ln 2d
a1,t

)
< t

(
2d
a1,t

)− 1
s−t

(
2d
a1,t

) 1
s−t s− t

λ1 − λ2
ln t < t.

Let D = max
{

9,
(

2d
a1,t

) 1
s−t s−t

λ1−λ2

}
. Here 9 is needed to satisfy the requirement lnD > 2

in Lemma 7. Then by Lemma 7, the above inequality holds when t > 3D lnD. Therefore,

(10) and hence (9) holds when k > 3
(

2d
a1,t

)− 1
s−t

D lnD. To make this bound polynomially
computable, we can simplify it as follows. Suppose that 2d ≥ a1,t. Then (9) holds when

k > k1 := 3⌈E⌉bins(⌈E⌉), where E = max
{

9, 2d
a1,t

· s− t

λ1 − λ2

}

because in this case
(

2d
a1,t

) 1
s−t ≤ 2d

a1,t
and

(
2d

a1,t

)− 1
s−t ≤ 1. On the other hand, if 2d < a1,t,

then (9) holds when

k > k1 := 3
⌈a1,t

2d E
⌉

bins(⌈E⌉), where E = max
{

9, s− t

λ1 − λ2

}

because in this case
(

2d
a1,t

)− 1
s−t

<
(

2d
a1,t

)−1
and

(
2d

a1,t

) 1
s−t

< 1.
Finally, we conclude that (7) holds for all k > k2 := max{k0, k1}, where both k0 and k1

are computable in PTIME. In other words, we obtained a polynomially computable value
k2 such that P(ak) > c = λ for all k > k2. Using the same argument as at the end of the
proof of Lemma 8, we can show that the (strict) emptiness and λ-reachability problems are
decidable in EXPTIME. ◀

We are now ready to give a proof of Theorem 4.
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Proof of Theorem 4. Let P = (u,A, v) be a polynomially ambiguous unary PFA. By
Lemma 5, we can compute in EXPTIME a set of d polynomially ambiguous unary PFAs
{Ps = (us, U, v

′) | 0 ≤ s ≤ d− 1} such that U is rational upper-triangular and

P(ard+s) = Ps(ar) = uT
s U

rv′,

where 0 ≤ s ≤ d− 1.
Suppose λ is a given cutpoint. If we want to decide whether there exists k such that

P(ak) = λ (or P(ak) ≥ λ), we can check for every s from 0 to d− 1 whether there exists r
such that Ps(ar) = λ (or Ps(ar) ≥ λ, respectively), which can be done in EXPTIME using
Lemmas 8 and 9. Namely, we will use Lemma 8 if λ ̸= cs and Lemma 9 if λ = cs for the
current values of s ∈ [0, d − 1]. Finally, we note that even though the value of d can be
exponential in the input size, the whole procedure can still be done in EXPTIME. ◀

Skolem’s problem is at least NP-hard [6] implying that the λ-reachability and emptiness
problems are also NP-hard, at least for PFA of exponential ambiguity. Our next result shows
that NP-hardness can be established even for unary PFAs of finite ambiguity.

▶ Theorem 10. The λ-reachability and emptiness problems for unary finitely ambiguous
Probabilistic Finite Automata P = (u,A, v) with {0, 1}-matrix A are NP-hard.

Proof. The NP-hardness of Skolem’s problem was established in [6]. Specifically, Corollary 1.3
of [6] states that the problem of determining, for a given matrix A ∈ {0, 1}n×n and row
vectors b, c ∈ {0, 1}n, if bTAkc = 0 for some k ≥ 0 is NP-hard. Examination of the proof of
this corollary shows that in fact P is finitely ambiguous as we shall show.

The proof of Theorem 1.1 of [6] shows a reduction of 3SAT on m clauses with n letters
to a unary rational expression E of the form:

E =
k⋃

j=0
azj (arj )∗,

where k = O(n3m) and zj , rj = O(n6) as is not difficult to see from the proof in [6]. Notice
then that each zj , rj represented in unary has a polynomial size in terms of the 3SAT instance
and thus E also has a polynomial representation size.

We may then invoke Kleene’s theorem [15] to state that the language recognised by
E is also recognised by an NFA P = (b, {A}, c) which thus allows the derivation of Co-
rollary 1.3 of [6]. Note that E is simply the union of rational expressions of the form
Ej = azj (arj )∗. Each Ej can be transformed to an NFA Nj with zj + rj + 1 states
Sj = n0,j , . . . , nzj ,j , nzj+1,j , . . . , nzj+rj ,j with initial state n0,j , final state nzj+1,j and trans-
ition function δ : Sj × {a} → Sj given by δ(ni,j , a) = ni+1,j for 0 ≤ i ≤ zj + rj − 1 and
δ(nzj+rj

, a) = nzj+1,j .
We may then form an NFA N by N =

⋃k
j=0 Nj with the usual construction. In this

case, N has set of initial states {n0,j | 1 ≤ j ≤ k}, set of final states {nzj+1,j | 1 ≤ j ≤ k}
and states in disjoint subsets Sj and Sj′ with j ̸= j′ are not connected. This implies by the
IDA property of [23] that N is finitely ambiguous since there does not exist any state with
two outgoing transitions (by which reasoning we also know that each row of N ’s transition
matrix has exactly one entry 1 with all others 0). In fact one may see that N is k-ambiguous
with k = O(n3m). The number of states of N is d =

∑k
j=0 zj + rj + 1 = O(n9m) which is

polynomial in the 3SAT instance representation size.
We note that actually N is already close to a PFA. Since each row is zero except for

exactly one entry 1, matrix A is stochastic. We thus consider Probabilistic Finite Automaton
P = (u, {A}, c) where u = b

|b| is the initial (stochastic) vector. P has polynomial ambiguity
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since N does. Therefore, deciding if there exists k ≥ 0 such that P(ak) = 0 or P(ak) ≤ 0 is
NP-hard to determine, proving NP-hardness of the λ-reachability and emptiness problems.
Since we did not modify N to derive P other than to scale the initial vector, the degree of
ambiguity is retained. ◀

▶ Corollary 11. The λ-reachability and emptiness problems for unary polynomially ambiguous
PFA P = (u,A, v) with {0, 1}-matrix A are NP-complete.

Proof. NP-hardness follows from Theorem 10 since finite ambiguity is a stronger property
than polynomially ambiguity. To prove the NP upper bound, we will show that the algorithm
in the proof of Theorem 4 can be done in NP. We again use Lemmas 5, 6, 8 and 9. Note
that the value d from Lemma 5 can be exponential. However, its binary presentation has
polynomial size. So, instead of cycling though all s from 0 to d−1, we can nondeterministically
guess in polynomial time a value s ∈ [0, d− 1].

Next, we note that the values of k0 in Lemma 8 and k2 in Lemma 9 also have binary
representations of polynomial size. Again, instead of checking every k in [0, k0] or [0, k2], we
can nondeterministically guess k in polynomial time.

Finally, in the verification step of our algorithm we need to compute the matrices Ad, As

and (Ad)k. This can be done in polynomial time using exponentiation by squaring. Indeed,
the exponentiation by squaring requires polynomially many steps. Also, any power of a
stochastic {0, 1}-matrix is also a stochastic {0, 1}-matrix, so the entries of the power matrices
do not grow in size. ◀

4 Binary PFA

The following theorem shows that the λ-reachability and emptiness problems are NP-hard for
binary PFA of polynomial ambiguity with commuting transition matrices (and the matrices
can be assumed fixed in the case of λ-reachability and nonstrict emptiness). The emptiness
problem for non-commutative binary PFA over 25 states is known to be undecidable, at least
over exponentially ambiguous PFA [12]. Emptiness is also undecidable for exponentially
ambiguous commutative PFA, although with many more states and a larger alphabet [2].

▶ Theorem 12. The λ-reachability and emptiness problems are NP-hard for binary prob-
abilistic finite automata of polynomial ambiguity with commuting matrices of dimension 9
for λ-reachability, 37 for nonstrict emptiness, and 40 for strict emptiness. Moreover, the
matrices can be assumed fixed for the λ-reachability and nonstrict emptiness problems.

Proof. We use a reduction from the solvability of binary quadratic Diophantine equations.
Namely, given an equation of the form ax2 + by − c = 0, where a, b, c ∈ N, it is NP-hard to
determine if there exists x, y ∈ N satisfying the equation [16]. We begin with the λ-reachability
problem before considering the emptiness problem.

λ-Reachability reduction. Let A =
(

1 1
0 1

)
and note that Ak =

(
1 k

0 1

)
and that (A⊗

A)k
1,4 = (Ak⊗Ak)1,4 = k2. We form a weighted automaton2 W1 on binary alphabet Σ = {h, g}

in the following way to encode ax2 +by (we will deal with c later). Let W1 = (u1, ϕ, v1) where
u1, v1 ∈ N7 and ϕ : Σ∗ → N7×7. We define u1 = (a, 0, 0, 0, b, 0, 0)T , v1 = (0, 0, 0, 1, 0, 1, 0)T

and ϕ(ℓ) = 1
4ϕ

′(ℓ) for ℓ ∈ {h, g} with

2 For our purposes here, by a weighted automaton we simply mean an automaton whose initial vector,
final vector, and transition matrices are over nonnegative integers.
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ϕ′(h) =
(

(A⊗A) ⊕ I2 t1
06 4

)
, ϕ′(g) =

(
I4 ⊕A t2

06 4

)
,

with 0k = (0, 0, . . . , 0) ∈ Nk, t1 = (0, 2, 2, 3, 3, 3)T and t2 = (3, 3, 3, 3, 2, 3)T . We see
then that each row of ϕ′(ℓ) is nonnegative and sums to 4, thus ϕ(ℓ) is stochastic for
ℓ ∈ {g, h}. Furthermore, by the mixed product property of the Kronecker product, we see
that ((A⊗A) ⊕ I2)x = (Ax ⊗Ax) ⊕ I2 and (I4 ⊕A)y = I4 ⊕Ay for x, y ∈ N and thus by the
block upper triangular structure of ϕ′(h), ϕ′(g), we see that

ϕ′(hxgy) =
(

(Ax ⊗Ax) ⊕Ay txy

06 4x+y

)
,

where txy is a nonnegative vector maintaining the row sum at 4x+y. We now see that

uT
1 ϕ(hxgy)v1 = ax2 + by

4x+y
(11)

We define a second weighted automaton W2 = (u2, ψ, v2) with u2 = (c, 0)T , v2 = (0, 1)T

and ψ : Σ∗ → N2×2 with ψ(ℓ) = 1
4ψ

′(ℓ) for ℓ ∈ {h, g} defined thus: ψ′(h) = ψ′(g) =
(

1 3
0 4

)
.

We therefore see that

uT
2 ψ(hxgy)v2 = c(4x+y − 1)

4x+y
= c(1 − 1

4x+y
) (12)

We now join W1 and W2 into a 9-state PFA P = (u, γ, v) where u = 1
a+b+c [u1|u2],

v = [v1|v2] and γ(ℓ) = ϕ(ℓ) ⊕ ψ(ℓ). Combining Eqns (11) and (12) we see that

uT γ(hxgy)v = 1
a+ b+ c

(
ax2 + by

4x+y
+ c(1 − 1

4x+y
)
)

= 1
a+ b+ c

(
c+ ax2 + by − c

4x+y

)
(13)

which equals c
a+b+c if and only if ax2 + by − c = 0. Note that γ(h) and γ(g) commute by

their structure since clearly (A⊗A) ⊕ I and I4 ⊕A commute, giving (A⊗A) ⊕A in both
cases (as a consequence of the mixed product properties of Lemma 1) and the rightmost
vector of the matrix simply retains the row sum at 1 for such a product since the matrices
are stochastic. Both γ(h) and γ(g) are upper-triangular thus P is polynomially ambiguous.

Nonstrict Emptiness reduction. We now show the proof of the emptiness problem. We
showed that the λ-reachability problem is NP-hard by deriving a PFA P over the binary
alphabet {h, g} such that P(hxgy) is given by Eqn. 13. We note however that a non solution
to ax2 + by − c = 0 can be positive or negative and thus we may be above or below the
threshold c

a+b+c . This encoding thus cannot be used to show the NP-hardness of the
emptiness problem.

Instead, we can use a similar encoding of the quartic polynomial given by (ax2 +by−c)2 =
a2x4 + 2abx2y + b2y2 + c2 − 2acx2 − 2bcy with a, b, c ∈ N. Note that we arranged the four
positive terms first, followed by the two negative terms. Clearly (ax2 +by−c)2 is nonnegative
and equals zero if and only if ax2 + by − c = 0. We will derive a PFA P2 such that

P2(hxgy) = 1
z

(
(2ac+ 2bc) + 1

16x+y
(ax2 + by + c)2

)
,
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where z = a2 + 2ab+ b2 + c2 + 2ac+ 2bc, with the property that P2(hxgy) ≥ 2ac+2bc
z with

equality if and only if (ax2 + by − c)2 = 0 which is NP-hard to determine. To this end, we
compute the following four matrices {H+, G+, H−, G−}, the idea being that H+ and G+ will
be used to compute the positive four terms and H− and G− will compute the negative terms:

H+ = (A⊗A⊗A⊗A)︸ ︷︷ ︸
x4

⊕ (A⊗A⊗ I2)︸ ︷︷ ︸
x2y

⊕ (I2 ⊗ I2)︸ ︷︷ ︸
y2

⊕ 1︸︷︷︸
1

G+ = (I2 ⊗ I2 ⊗ I2 ⊗ I2)︸ ︷︷ ︸
x4

⊕ (I2 ⊗ I2 ⊗A)︸ ︷︷ ︸
x2y

⊕ (A⊗A)︸ ︷︷ ︸
y2

⊕ 1︸︷︷︸
1

H− = (A⊗A)︸ ︷︷ ︸
x2

⊕ I2︸︷︷︸
y

G− = (I2 ⊗ I2)︸ ︷︷ ︸
x2

⊕ A︸︷︷︸
y

and by the mixed product property of Kronecker products of Lemma 1),

Hx
+G

y
+ = (Ax ⊗Ax ⊗Ax ⊗Ax) ⊕ (Ax ⊗Ax ⊗Ay) ⊕ (Ay ⊗Ay) ⊕ 1

Hx
−G

y
− = (Ax ⊗Ax) ⊕Ay

Note that Hx
+G

y
+ and Hx

−G
y
− each contain the positive and negative (respectively) term

of (ax2 + by − c)2, excluding the coefficients, e.g. (Hx
+G

y
+)1,16 = x4 and (Hx

+G
y
+)17,24 = x2y

etc. Note also that H+G+ = G+H+ and H−G− = G−H− which also follows from the mixed
product properties and thus matrices {H+, G+} and {H−, G−} commute.

As before, we may now increase the dimension of each matrix {H+, H−, G+, G−} by 1 to
ensure a common row sum (of 16 in this case) by adding a new column on the right hand side
of each matrix, and then divide each matrix by this common value to give {H ′

+, H
′
−, G

′
+, G

′
−}

so that each of these matrices is row stochastic. Matrices {H ′
+, G

′
+} and {H ′

−, G
′
−} still

commute since this change only has an effect on the final column of the matrix.
We now show how to handle each term of (ax2+by−c)2. We first handle the positive terms.

We define u1 = (a2, 0, . . . , 0)T ∈ Q16, u2 = (2ab, 0, . . . , 0)T ∈ Q8, u3 = (b2, 0, 0, 0)T ∈ Q4

and u4 = c2 and then let u+ = [u1|u2|u3|u4|0] ∈ Q30. We let v1 = (0, . . . , 0, 1)T ∈ Q16,
v2 = (0, . . . , 0, 1)T ∈ Q8, v3 = (0, 0, 0, 1)T ∈ Q4 and v4 = 1, and let v+ = [v1|v2|v3|v4|0] ∈ Q30.
We then see that

uT
+(H ′

+)x(G′
+)yv+

= 1
16x+y

(
uT

1 (Ax ⊗Ax ⊗Ax ⊗Ax)v1 + uT
2 (Ax ⊗Ax ⊗Ay)v2 + uT

3 (Ay ⊗Ay)v3 + uT
4 v4

)
= 1

16x+y

(
a2x4 + 2abx2y + b2y2 + c2)

(14)

We next handle the negative terms, which is essentially accomplished by switching final
and non-final states in the final state vectors to follow. Define u5 = (2ac, 0, 0, 0)T ∈ Q4

and u6 = (2bc, 0)T ∈ Q2 and let u− = [u5|u6|0] ∈ Q7. We let v5 = (0, 0, 0, 1)T ∈ Q4 and
v6 = (0, 1)T ∈ Q2. Define v− = [v5|v6|0] ∈ Q7. We then see that

uT
−(H ′

−)x(G′
−)y(1 − v−)

= (2ac+ 2bc) − 1
16x+y

(
uT

5 (Ax ⊗Ax)v5 + uT
6 A

yv6 + 0
)

= (2ac+ 2bc) − 1
16x+y

(
2acx2 + 2bcy

)
, (15)

where 1 = (1, 1, . . . , 1)T ∈ Q7. We used here the fact that X1 = 1 for a row stochastic matrix
X. We finally define that H = H ′

+⊕H ′
− ∈ Q37×37 and G = G′

+⊕G′
− ∈ Q37×37, both of which

are row stochastic and commute, and let u⋆ = [u+|u−]
z ∈ Q37 and v⋆ = [v+|(1 − v−)] ∈ Q37,
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with z = a2 + 2ab + b2 + c2 + 2ac + 2bc to normalise vector u⋆. We see then that u⋆ is a
stochastic vector as required. We define the PFA P2 = (u⋆, {H,G}, v⋆) and we can now
compute that

P2(hxgy) = uT
⋆ H

xGyv⋆

= uT
⋆ (H ′x

+G
′y
+ ⊕H ′x

−G
′y
−)v⋆

= 1
16x+y

 [u+|u−]
z

T


Hx

+G
y
+ ∗

0 16x+y 0

0 Hx
−G

y
− ∗

0 16x+y

 [v+|(1 − v−)]


= 1

z16x+y

(
uT

+H
x
+G

y
+v+ + uT

−H
x
−G

y
−(1 − v−)

)
= 1

z

(
uT

+(H ′
+)x(G′

+)yv+ + uT
−(H ′

−)x(G′
−)y(1 − v−)

)
= 1

z

(
(2ac+ 2bc) + 1

16x+y

(
a2x4 + 2abx2y + b2y2 + c2)

− 1
16x+y

(
2acx2 + 2bcy

))
= 1

z

(
(2ac+ 2bc) + 1

16x+y
(ax2 + by − c)2

)
(16)

where ∗ denote the column vectors used to ensure row sums of 16x+y and 0 denotes zero
matrices of appropriate sizes. We also used Eqns (14) and (15).

Since (ax2 + by − c)2 is nonnegative, we see that uT
⋆ H

xGyv⋆ ≥ 2ac+2bc
z with equality if

and only if (ax2 + by − c)2 = 0, which is NP-hard to determine. Therefore using cutpoint
λ = 2ac+2bc

z ∈ Q ∩ [0, 1] means the (nonstrict) emptiness problem is NP-hard (i.e. does there
exist x, y ∈ N such that uT

⋆ H
xGyv⋆ ≤ λ is NP-hard). As before, matrices H and G are

upper-triangular and commute by their structure, and therefore the result holds.

Strict Emptiness reduction. Finally we show how to handle the strict emptiness problem.
We proceed with a technique inspired by [10]. By (16), if P2(hxgy) = uT

⋆ H
xGyv⋆ ̸=

1
z (2ac+ 2bc), then uT

⋆ H
xGyv⋆ ≥ 1

z

(
(2ac+ 2bc) + 1

16x+y

)
therefore P2(hxgy) ≤ 1

z (2ac+ 2bc)
if and only if P2(hxgy) < 1

z

(
(2ac+ 2bc) + 1

16x+y

)
.

Let us adapt P2 in the following way to create a new PFA P3. Note that P2 has 6 initial
states (by u⋆). We add three new states to P3, denoted q0, qF and q∗. State q0 is a new initial
state of P3 which, for any input letter, has probability 1

2·6 of moving to each of the 6 initial
states of P2 and probability 1

2 to move to new state qF . State qF is a new final state that
remains in qF for any input letter with probability 1 − 1

16z and moves to a new non-accepting
absorbing sink state q∗ with probability 1

16z . We now see that for any a ∈ {h, g}:

P3(aw) = 1
2P2(w) + 1

2

(
1 − 1

16|w|z|w|

)
If there exists w1 = hxgy with x, y ≥ 0 such that P2(w1) ≤ 1

z (2ac + 2bc) then P2(w1) =
1
z (2ac+ 2bc) and thus:

P3(aw1) = 1
2

(
1
z

(2ac+ 2bc)
)

+ 1
2

(
1 − 1

16|w1|z|w1|

)
<

1
2

(
1
z

(2ac+ 2bc) + 1
)
.

For any w2 = hxgy with x, y ≥ 0 such that P2(w2) > 1
z (2ac+ 2bc) then P2(w2) ≥ 1

z (2ac+
2bc) + 1

16x+y by (16). Thus:

P3(aw2) ≥ 1
2

(
1
z

(2ac+ 2bc) + 1
16|w2|

)
+ 1

2

(
1 − 1

16|w2|z|w2|

)
>

1
2

(
1
z

(2ac+ 2bc) + 1
)
.
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Thus determining if there exists w = hxgy such that P3(w) < 1
2

( 1
z (2ac+ 2bc) + 1

)
, i.e.

the strict emptiness problem for P3 on cutpoint 1
2

( 1
z (2ac+ 2bc) + 1

)
, is NP-hard. The

modifications to P2 retain polynomial ambiguity since q0 and qF have no incoming (non
self looping) edges and q∗ has no outgoing edges, therefore property EDA does not hold.
Commutativity of the PFA is unaffected since P3 is identical to P2 except for adding three
new states, behaving identically for both input letters. Note that P3 has 37 + 3 = 40
states. ◀
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