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This dissertation contains several results in computable model theory and in the

theory of automatic structures. The first chapter is an introduction. In chapter 2

we prove the existence of an uncountably categorical theory whose only computably

presentable model is the saturated one. In chapter 3 we construct a computably

categorical saturated model, and in chapter 4 we show that there exists a prime

model of finite computable dimension. In chapter 5 we study non-computable

presentations of Π0
1-algebras. The last chapter is devoted to automatic structures.

We provide new examples of automatic indecomposable torsion-free abelian groups

and construct a new automatic presentation of the group Z× Z.
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Chapter 1
General Introduction

This thesis contains several results in the fields of computable model theory and
automatic structures which are the parts of a broader area of research called com-
putable mathematics. Computable mathematics studies the effective content of
theorems, notions, and constructions from various branches of mathematics, espe-
cially from algebra, analysis, combinatorics, and model theory. One of the general
goals of computable mathematics is to find out whether the effective versions of
classical mathematical results are true (in various senses of what it means to be
effective). In the case when the effective version of a theorem is false, we would
like to know the limit at which it is still true and to find a sharp counterexample.

We will mainly be concerned with computable model theory. The main objects
of study here are computable structures (models) or structures computable relative
to some oracle.

Definition 1.1. A structure is called computable if its domain is a computable
subset of natural numbers and all its functions and relations are uniformly com-
putable. A structure is called computably presentable if it is isomorphic to a com-
putable structure.

The first attempt to study computable algebraic structures probably dates
back to van der Waerden [72, 73] in 1930, who introduced and studied the notion
of an explicitly given field. These are the ones whose elements are presented by
distinguishable symbols in such a way that one can perform basic field operations
effectively. However, this definition was not precise since it did not specify what
it meant “to perform operations effectively”. Fröhlich and Shepherdson [14, 15]
used the rigorous notion of a recursive function to make this definition precise
and studied explicit fields in a formal setting. Rabin [69, 70] initiated the study
of computable groups and continued the research on computable fields. In the
early 1960’s Mal’cev [58] introduced the notion of a constructive structure, which
is equivalent to the concept of a computable structure. Ershov [10] and Goncharov
[19, 20, 21, 22] continued the systematic study of constructive models ([11] contains
a good survey on this topic). Nerode and Metakides [60] first began to use priority
methods from recursion theory in the study of computable structures.

In computable model theory one usually investigates the structure of com-
putable models of a first order theory. Typical questions include the following.
Given a first order theory, does it have a computable model? Which models of
the theory are computably presentable and which are not? Are there computable
models with some specific model-theoretic or computability-theoretic properties?
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Many well-known theorems in classical model theory have effective versions.
Here are some typical examples. The effective version of Completeness Theorem
states

Theorem 1.2. Every decidable theory has a decidable model.

A theory here is a consistent set of first order sentences closed under logical
consequences. A structure A is decidable if its full diagram is computable, that
is, there is an algorithm to decide whether A � ϕ(c̄) for every formula ϕ(x̄) and
tuple c̄ ∈ |A|. The proof of this theorem uses the fact that the usual Henkin
construction can be carried out effectively if the given theory is decidable. The
same argument shows that every consistent theory T has a model decidable in T .
Goncharov/Nurtazin [24] and independently Harrington [27] proved the following
result about the existence of decidable prime models.

Theorem 1.3. Let T be a complete decidable theory that has a prime model. Then
T has a decidable prime model if and only if the set of all principal types of T is
computable.

Morley [63] and Millar [61] gave a characterization of theories that have decid-
able saturated models.

Theorem 1.4. Let T be a complete theory. Then T has a decidable saturated
model if and only if there is a computable list of all types of T .

However, many other theorems of classical mathematics do not hold effectively.
For instance, the effective version of König’s Lemma would state that every infinite
computable finitely branching tree has an infinite computable path. This statement
is not true since there is an example of infinite computable binary tree with no
infinite computable path.

A good introduction to computable mathematics, especially to computable
algebra, model theory and combinatorics, as well as an overview of modern devel-
opments in this fields can be found in the Handbooks of recursive mathematics [12]
and in the Handbook of computability theory [25]. Journal papers such as Khous-
sainov/Shore [51], Goncharov/Khoussainov [17] and many other surveys published
in Computability theory and its applications [8] provide an extensive overview of
current trends and open problems in computable mathematics.

The outline of the thesis is as follows. Chapters 2, 3 and 4 are devoted to the
study of computable models. In chapter 2 we construct an uncountably categorical
theory that has a computable saturated model such that all other models of the
theory are not computably presentable. In chapter 3 we provide an example of
a computably categorical saturated model whose theory is not ℵ0-categorical. In
chapter 4 we show how to construct prime models of finite computable dimension
n > 1.
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In chapter 5 we discuss Σ0
1- and Π0

1-structures, notions that generalize the
concept of a computable structure. We will study the following question: which
computable structures possess non-computable Π0

1-presentations? We show that
many well-known mathematical structures, which fail to have non-computable Σ0

1-
presentations, do possess non-computable Π0

1-presentations.
In chapter 6 we investigate automatic abelian groups. These are the groups

that can be recognized by finite automata. The structures that are recognizable
by finite automata are called automatic. They form a natural subclass of the
computable structures. In fact, all automatic structures are decidable. We will
give new examples of automatic torsion-free abelian groups and construct a new
automatic presentation of the group Z×Z, in which every nontrivial cyclic subgroup
is not recognized by a finite automaton.

Below is the description of each chapter in more details.

Chapter 2. A new spectrum of computable models

An important theme in computable model theory is the study of computable mod-
els of complete first order theories. More precisely, given a complete first order
theory T , one would like to know which models of T have computable copies and
which do not. A special case of interest is when T is uncountably categorical.
Our goal is to find examples of uncountably categorical theories with new spectra
of computable models. This question attracts interest because the known upper
bounds on the complexity of the spectra of computable models are quite high (hy-
perarithmetical in the general case), but the sets which are known to be realized
as spectra are very simple.

Recall that a theory T is called κ-categorical, where κ is a cardinal, if all
models of T of cardinality κ are isomorphic. The well-known result by Morley [62]
states that a theory T in a countable language is ℵ1-categorical if and only if it
is categorical in every uncountable cardinality. So we will often use the notions
uncountably categorical and ℵ1-categorical interchangeably. Typical examples of
ℵ1-categorical theories include the first order theories of the successor structure,
an algebraically closed field, and a vector space over a given countable field.

In [3], Baldwin and Lachlan developed the theory of ℵ1-categoricity in terms of
strongly minimal sets. They showed that the countable models of an ℵ1-categorical
theory T can be listed in an ω + 1 chain

A0 4 A1 4 · · · 4 Aω,

where the embeddings are elementary, A0 is the prime model of T , and Aω is
the countable saturated model of T . Based on the theory developed by Bald-
win and Lachlan, Harrington [27] and Khisamiev [40] in 1974 proved that if an
ℵ1-categorical theory T is decidable then all the countable models of T have com-
putable, and even decidable, presentations. Thus, for decidable ℵ1-categorical
theories the question of which models of T have computable presentations is fully
settled. However, the situation is far from clear when the theory T is not decidable.
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Goncharov in [20] initiated the study of computable models of uncountably
categorical theories without the assumption on decidability. He constructed an ℵ1-
categorical theory such that its prime model, that is A0, is computably presentable
and the others are not. Kudaibergenov [54] then constructed an ℵ1-categorical
theory T such that only A0, . . . ,An are computably presentable and the others are
not. In [47] Khoussainov, Nies, and Shore gave the following definition.

Definition 1.5. Let T be an ℵ1-categorical theory. The spectrum of computable
models of T , denoted by SCM(T ), is the set

SCM(T ) = {i ∈ ω + 1 : Ai has a computable presentation}.

Currently there are two approaches in the study of computable models of ℵ1-
categorical theories. One of them addresses the issue on the degree theoretic
complexity of models and theories. The other studies the spectrum of computable
models. This chapter contributes to the second approach. For completeness of the
picture we would like to say a few words about the first approach as well.

The first result here in due to Goncharov and Khoussainov [18]. For every
given n > 1, they constructed an ℵ1-categorical theory T of finite signature with
the following property. The Turing degree of T is 0(n) and all countable models of
T are computable. We mention here that it is still an open problem if there exists
an ℵ1-categorical theory of degree 0(ω) which has a computable model.

To formulate the next results we need to recall a couple of definitions. A
complete theory T is strongly minimal if every definable (possibly with parameters)
subset B ⊆ A of any model A of T is either finite or cofinite. It is well-known that
strongly minimal theories are uncountably categorical [3]. Let B ⊆ A be a subset
of a model A. The algebraic closure of B, denoted by acl(B), is the collection of
all a ∈ A that are definable by formulas with parameters from B such that these
formulas have finitely many solutions in A. A strongly minimal theory T is trivial
or has trivial pregeometry, if for every subset B ⊆ A of any model A of T , acl(B)
is equal to the union of acl({b}) for all b ∈ B.

For trivial and strongly minimal theories Goncharov/Harizanov/Laskowski/
Lempp/McCoy [23] obtained the following upper bound on the complexity of the
models. If T is trivial, strongly minimal and has a computable model, then T
is computable in 0′′. Therefore, all countable models of T are 0′′-decidable. In
particular, they are 0′′-computable.

Recently, Khoussainov/Laskowski/Lempp/Solomon [53] showed that the upper
bound in the above mentioned result is sharp. They constructed a trivial, strongly
minimal theory such that its prime model is computable and each of the other
countable models computes 0′′.

As for the spectra of computable models, Nies [64] showed that for every ℵ1-
categorical theory T , SCM(T ) is Σ0

3(∅ω). It means that in general SCM(T ) may
have hyperarithmetical complexity. It turns out that much better upper bounds
can be obtained in the cases when T is model complete or when it is trivial and
strongly minimal.

4



A theory T is model complete if for any A, B models of T such that A is a
substructure of B, we have that A is an elementary substructure of B. If T is
a model complete ℵ1-categorical theory, then SCM(T ) is Σ0

4 (Nies [64]). Gon-
charov/Harizanov/Laskowski/Lempp/McCoy [23] showed that if T is trivial and
strongly minimal, then SCM(T ) is Σ0

5.

Surprisingly, the known examples of spectra of computable models have very
simple descriptions as stated in the next theorem.

Theorem 1.6. The following sets can be realized as spectra of computable models:

1) the empty set and ω + 1 itself (Harrington [27] and Khisamiev [40])

2) the set {0} (Goncharov [20]; Herwig/Lempp/Ziegler [28] showed this for a the-
ory of finite signature)

3) initial segments {0, . . . , n} (Kudaibergenov [54])

4) (ω + 1) \ {0} and ω (Khoussainov/Nies/Shore [47])

5) intervals {1, . . . , n} (Nies [64]).

Therefore, finding new examples of the spectra of computable models is an
interesting problem in computable model theory. In this work we will show that
{ω} can be realized as a spectrum.

Theorem 2.3.1. There exists an ℵ1-categorical but not ℵ0-categorical theory whose
only computably presentable model is the countable saturated one.

As a tool we introduce a notion related to limitwise monotonic functions, called
S-limitwise monotonic functions. Using it we construct a family of uniformly
computably enumerable sets with specific computability-theoretic properties and
then encode it into a computable graph. This graph is a disjoint union of cubes,
and each such cube codes a set from the family that we have constructed.

Our notions of A-cubes and S-limitwise monotonic functions naturally gen-
eralize the notions of n-cubes and limitwise monotonic functions used in [47] to
construct an example of ℵ1-categorical theory T such that all models of T except
the prime one have computable presentation.

The material of this chapter is published in Hirschfeldt/Khoussainov/Semukhin
[30].

Chapter 3. Computably categorical saturated models

Our main interest in this chapter concerns the existence of a computable non
ℵ0-categorical saturated structure with a unique computable isomorphism type.
Structures with exactly one computable isomorphism type are called computably
categorical. In general, the computable dimension of the structure is the number
of its computable presentations up to computable isomorphism. The known stan-
dard examples of computably categorical structures are usually prime models of
their own theories or become prime in expansions by finitely many constants. For
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example, finitely generated computable algebras, the rational numbers under the
natural ordering, finite dimensional vector spaces over computable fields and the
ring of integers are computably categorical. There are also pathological examples
of computably categorical structures that fail to satisfy certain natural properties
(for example, existence of Scott families) exhibited by most computably categorical
structures [7, 50, 55]. One notes that these specifically constructed computably
categorical structures fail to be prime models in expansions by finitely many con-
stants. In fact, the theories of such structures do not have saturated models due
to the fact that the theories have uncountably many types.

We are interested in the following question: how does the computable dimen-
sion of a structure depend on its model-theoretic properties? In particular, if
we consider prime and saturated models, what computable dimensions can these
structures have?

We briefly recall some basic notions and facts from model theory. Let T be a
complete theory. A countable model of T is said to be prime if it is elementarily
embeddable into any model of T . A countable model of T is said to be countable
saturated if the model realizes all the types of the theory in all possible expansions
of T by finitely many constants. It is well-known that if T has at most countably
many countable models, then T has a countable saturated model as well as a prime
model. Moreover, every other countable model of T can be elementarily embedded
into the saturated model (see Hodges’ or Marker’s textbooks on model theory
[33, 34, 59]). We call a structure saturated (prime) if it is a saturated (prime)
model of its own theory. An important model-theoretic property of prime and
saturated models of a given theory T , in the case when they exist, is that they are
unique up to isomorphism. We address this uniqueness property of the saturated
models from a computability-theoretic point of view.

We have already provided examples of computably categorical prime models.
To this list we can also add structures like the atomless Boolean algebra and the
successor structure (N, S), where S(n) = n + 1. It is also not hard to give natu-
ral examples of prime but not computably categorical models. For instance, the
natural numbers with their order (N,6) is the prime model but not computably
categorical, since it has a computable presentation, where the successor relation is
not computable. Another such example is Bω, the Boolean algebra of finite and
cofinite subsets of N. In fact, all these structures have infinite computable dimen-
sion. There is also an example of a prime model of finite computable dimension
n > 1 (see Chapter 4 for details).

However, despite the fact that countable saturated models (of a given theory)
form one isomorphism type, all the known examples of computable saturated mod-
els are not computably categorical or their theories are ℵ0-categorical. The latter
means that they are prime models at the same time. A typical example here is
the theory of vector spaces over the field of rational numbers. The non-saturated
models of the theory are all the finite-dimensional vector spaces. They are all
computably categorical. The countable saturated model is the countably infinite
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dimensional vector space. The saturated model is, however, not computably cate-
gorical. This is because there are two computable copies of the infinite dimensional
vector space such that in one copy the dependency problem is computable and in
the other it is not. Similarly, all the non-saturated models of the theory of one
successor are computably categorical, while the saturated model of the theory is
not. The reason for this is that the saturated model has two computable presen-
tations such that in one the algebraic dependency relation is computable and in
the other it is not.

Thus, it is interesting to give a nontrivial example of a computably categorical
saturated model whose theory is not ℵ0-categorical. Our main result in this chapter
is the construction of such structure.

Theorem 3.2.1. There exists a countable saturated not ℵ0-categorical model that
has a unique computable isomorphism type.

The construction has two main parts. In the first part, we built a uniformly
computably enumerable family of sets such that some specific enumerations of the
family are equivalent via computable permutations. The construction of such fam-
ily involves some facts and techniques from the theory of Kolmogorov complexity,
which is widely used in the field of algorithmic randomness.

In the second part, we encode this family into a computably categorical struc-
ture using the construction of Fräıssé limits. The structure is a disjoint union of
graphs, each of which encodes a certain set from the family. Namely, a set B is
coded by a graph which is the Fräıssé limit of K(B), the class of all finite graphs
which do not contain cycles of lengths in B. It turns out that the structure is
computably categorical and saturated. Moreover, the theory of this structure has
countably many countable models. Therefore, it is not ℵ0-categorical.

We note that it is an open problem whether there exists a countable saturated
model of finite computable dimension greater than 1.

The concepts of computable structure and computable categoricity can nat-
urally be extended as follows. A structure is said to be a Σ0

1-structure if it has
universe ω and the open positive diagram of the structure, that is the set of all open
formulas without negations true in the structure, forms a computably enumerable
set of formulas. We stress that in the definition of a Σ0

1-structure it is explicit
that the domain of the structure is ω and the equality in the structure is a c.e.
relation on ω and not the true equality of numbers. A Σ0

1-structure is computably
categorical if any two Σ0

1-presentations of the structure are computably isomorphic.
Clearly, every computable structure is also a Σ0

1-structure. Therefore, if a com-
putable structure is computably categorical when one considers Σ0

1-presentations,
then all Σ0

1-presentations of the structure must be computable. Similarly, if a non-
computable Σ0

1-structure is computably categorical then the structure does not
have a computable presentation. As the second application of our Kolmogorov
complexity technique, we prove the following theorem.

7



Theorem 3.3.1. There is an ℵ1-categorical but not ℵ0-categorical theory whose
countable saturated model is a computably categorical Σ0

1-structure.

This partially answers the question of Goncharov about the existence of a
computably categorical saturated model of an ℵ1-categorical theory. However,
the original question is still an open problem. We will also deal with Σ0

1- and
Π0

1-structures in chapter 5.
In the last section of this chapter we will give a new proof of Theorem 2.1 from

[47], which we restate here.

Theorem 1.7. There exists an ℵ1-categorical but not ℵ0-categorical theory T all
models of which except the prime one have computable presentations.

We point out here that in the proof of this theorem we use the same notion
of A-cubes as in Chapter 2, where we constructed a theory T such that only the
countable saturated model of T has a computable presentation.

The material of this chapter is published in Khoussainov/Semukhin/Stephan
[49].

Chapter 4. Prime models of finite computable dimension

As we pointed out in the very beginning of the introduction, computable math-
ematics studies the effective versions of classical mathematical notions and con-
structions. One of the most fundamental notions in mathematics is that of an iso-
morphism. In algebra and model theory we usually identify isomorphic structures
and consider them to be the same. However, when studying computable models,
one can see that isomorphic structures might have different computability-theoretic
properties. Therefore, we introduce the notion of a computable isomorphism, in-
stead of the classical one, and use it as a tool to distinguish two different com-
putable presentations of the same structure. This approach leads us to the notion
of computable dimension, which is equal to the number of computable presentations
of the structure up to computable isomorphism.

In this chapter we will answer the following open question in computable model
theory. Does there exist a structure of computable dimension two which is the
prime model of its own theory? It is easy to give examples of prime models with
dimension 1 or ω. For instance, the countable dense linear order without endpoints
and one successor structure (N, S) are computably categorical, while (N,6) and
Bω, the Boolean algebra of finite and cofinite subsets of the naturals, have infinite
computable dimension.

However, it is much more difficult to construct a structure of finite computable
dimension k > 1. Goncharov [21, 22] was the first to give an example of such struc-
ture. In [21] he constructed a uniformly computably enumerable (u.c.e.) family F
of sets that has exactly two non-equivalent one-to-one computable enumerations.
This family is then encoded into a computable graph G in such a way that the
computable dimension of G is equal to the number of non-equivalent one-to-one
computable enumerations of F .
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Since then many improvements to the construction have been made to obtain
various strengthenings of this result. For example, Cholak/Goncharov/Khoussai-
nov/Shore [6] showed that for each k > 1, there is a computably categorical struc-
tureA such that any expansion ofA by a single constant has computable dimension
k. This construction was further improved by Hirschfeldt/Khoussainov/Shore [31],
who showed that it is possible to make the dimension of the expanded structure
infinite.

The research on the structures of finite dimension is also related to the study of
degree spectra of relations on computable models. The degree spectrum of a relation
R on a computable structure A is the set of Turing degrees of images of R in all
computable presentations of A. Harizanov [26] showed that there exists a relation
U in a structure A of computable dimension 2 such that DgSpA(U) = {0,d},
where d 6 0′ and does not contain a c.e. set. Later on, Khoussainov and Shore
[50] proved that there exists a relation U in a structure A of dimension 2 such that
DgSpA(U) = {0,d}, where d is c.e. but not computable. Hirschfeldt [29] further
improved this result and showed that d can be any non-computable c.e. Turing
degree.

All known examples of the structures of finite computable dimension k > 1
are not the prime models of their theories. Hence it was an open problem as to
whether there exists a prime model of computable dimension 2. This question is
especially interesting because prime models are relatively simple from a model-
theoretic point of view. In fact, they are elementarily embeddable into any other
model of their theory. So, the problem is whether it is possible to encode enough
information into a prime model to construct such a structure of dimension two.
The main result of this chapter is the construction of such structure.

Theorem 4.1.1. There exists a computable structure of dimension two which is
the prime model of its own theory.

The construction is based on coding a u.c.e. family of sets F constructed by
Goncharov [21] into a graph. The properties of the family that will be useful in
our construction are listed below:

1) F has exactly two nonequivalent one-to-one computable enumerations;

2) every finite set S ∈ F contains an element n(S), called a marker for a finite
set, that does not belong to any other set from F ;

3) every infinite set S ∈ F contains an element n(S), called a marker for an infinite
set, that does not belong to any other infinite set from F .

The last two properties of F allow us to make the coding in such a way that every
element of the graph is definable by a first order formula. This implies that the
structure is prime.
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We also give examples of prime models of finite computable dimension in some
specific classes of algebraic structures.

Theorem 1.8. There are prime models of computable dimension 2 in the following
classes of structures:

1) undirected graphs (section 4.2.1),

2) partially ordered sets (section 4.2.2),

3) lattices (section 4.2.3),

4) integral domains expanded by finitely many constants (section 4.2.4).

The construction of these examples follows the technique from Hirschfeldt/
Khoussainov/Shore/Slinko [32], where they developed the methods for coding di-
rected graphs into undirected, irreflexive graphs, partial orders, lattices, integral
domains, nilpotent groups, etc. These codings preserve the following computability-
theoretic properties of the structures:

(a) degree spectra of the structures;

(b) degree spectra of relations on computable structures;

(c) computable dimensions of the structures as well as computable dimensions of
their expansions by a single constant.

We will show that if in the original structure A every element was definable by a
first order formula, then the structure B, into which we encode A, is prime. In fact,
every b ∈ B is also definable by some formula or, in the case of integral domains,
there is a formula with finitely many solutions that holds on b.

Chapter 5. Π0
1-presentations of algebras

The study of computable models can naturally be extended to include a wider
class of structures. This can be done by postulating that the atomic diagrams
or natural fragments of the atomic diagrams are in some complexity class such
as Σ0

n or Π0
n. These classes of structures include computably enumerable (c.e.)

algebras and co-c.e. algebras which we call Σ0
1-algebras and Π0

1-algebras, respec-
tively. Roughly speaking, Σ0

1-algebras are the ones whose positive atomic diagrams
are computably enumerable, and Π0

1-algebras are the ones whose negative atomic
diagrams are computably enumerable. Typical examples are finitely presented al-
gebras, like finitely presented groups or rings, and groups generated by finitely
many computable permutations of ω.

There has been some research on Σ0
1-algebras in the works by Feiner [13], Love

[57], Kasymov [37, 38], Kasymov/Khoussainov [39] and Khoussainov/Lempp/Sla-
man [44]. However, not much is known about Π0

1-algebras and their properties.
The main goal of this chapter is to study the question as to which computable al-
gebras are isomorphic to non-computable Π0

1-algebras. Examples we have in mind
are typical computable structures such as arithmetic (ω, S,+,×), finitely generated
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term algebras and fields. We would like to know whether the isomorphism types of
these typical computable structures contain non-computable but Π0

1-algebras. In
regard to this, it is worth noting that all these mentioned structures fail to be iso-
morphic to non-computable Σ0

1-algebras. Hence, the existence of non-computable
Π0

1-presentations for such structures is of independent interest.

There are many algebraic structures that are naturally presented as Σ0
1- or Π0

1-
algebras. For example, finitely presented groups and Lindenbaum algebras of c.e.
first order theories are Σ0

1-algebras. On the other hand, the group G generated
by computable permutations p1, . . . , pn of N is a Π0

1-algebra. If we consider a
computable language L ⊆ Σ∗ in the alphabet Σ = {0, . . . , k−1}, then the quotient
structure A = (Σ∗, S0, . . . , Sk−1)/ ∼L is a Π0

1-algebra, where Si(x) = xi, and the
congruence ∼L is defined as x ∼L y iff ∀u (xu ∈ L↔ yu ∈ L).

Non-computable presentations of Σ0
1-algebras were studied by Khoussainov,

Lempp, and Slaman in [44]. They showed that a given Σ0
1-algebra A is non-

computable if and only if A preserves all the facts true in A. A fact here is a c.e.
conjunction of the form &i∈ω ∀x̄¬ψi(x̄, c̄), where each ψi(x̄, c̄) an atomic formula.
We say that A preserves the fact ϕ if A and some proper homomorphic image of
A satisfy ϕ.

This result implies that some well-known mathematical structures fail to pos-
sess non-computable Σ0

1-presentations. Namely, the following structures do not
possess non-computable Σ0

1-presentations:

1) arithmetic (N, S,+,×),

2) finitely generated term algebras (in fact, all finitely generated computable al-
gebras),

3) computable fields.

The motivation for this work was to answer the question: do these structures
possess non-computable Π0

1-presentations? In this chapter we give a sufficient
condition for a computable algebra to possess a non-computable Π0

1-presentation.
To formulate it, we introduce the notion of term-separable algebras (Definition
5.3.1). It turns out that the class of term-separable algebras is quite rich.

Proposition 5.3.3. The following algebras are term-separable:

1) arithmetic (N, S,+,×),

2) any term algebra,

3) any infinite field,

4) any torsion-free abelian group,

5) any infinite vector space over a finite field.
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Our main result of this chapter is the following theorem.

Theorem 5.4.1. Let A be a computable term-separable algebra and d be any c.e.
Turing degree. Then A possesses a Π0

1-presentation of degree d. In particular, it
possesses a non-computable Π0

1-presentation.

From Proposition 5.3.3 and Theorem 5.4.1 we obtain the following corollary.

Corollary 5.4.8. The following structures possess non-computable Π0
1-presentations:

1) arithmetic (N, S,+,×),

2) term algebras (both finitely and infinitely generated),

3) infinite computable fields,

4) computable torsion-free abelian groups,

5) infinite computable vector spaces over finite fields.

Therefore, structures like arithmetic, finitely generated term algebras, and infi-
nite computable fields possess non-computable Π0

1-presentations but fail to possess
non-computable Σ0

1-presentations.

The material of this chapter is published in Khoussainov/Slaman/Semukhin
[52].

Chapter 6. Finite automata presentable abelian groups

The notion of automatic or finite-automata (FA) presentable structure was first
introduced and studied by Hodgson [35, 36] in mid 70’s. About 20 years later
this notion received attention again in the work by Khoussainov and Nerode [45],
which gave rise to the modern development of the theory of automatic structures.

Roughly speaking, a structure A is called automatic or FA presented if, for
some finite alphabet Σ, the domain of A is an FA recognizable subset of Σ∗. In
addition to this, we require that the relations and the graphs of the operations of
A are recognized by finite automata, which operate synchronously on their input.
A structure is called FA presentable if it is isomorphic to an automatic structure.
We will give the precise definitions in the main text of this chapter.

The computations performed by finite automata are much more restrictive
than the ones by Turing machines. This implies that FA presentable structures
have nice algorithmic properties. Probably the best-known fact about automatic
structures is the following theorem proved independently by Hodgson and Khous-
sainov/Nerode [45].

Theorem 1.9. The model checking problem for automatic structures is decidable,
that is, given an FA presented structure A, a formula ϕ(x̄) and a tuple ā ∈ |A|,
there is an algorithm to decide whether A � ϕ(ā).
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In particular, this theorem implies that the first order theory of an FA pre-
sentable structure is decidable. Hodgson was the first who used this property to
give a new proof of the decidability of Presburger arithmetic Th(N,+). Another
interesting fact about FA presentable structures is that they are closed under first
order interpretations. Namely, if A is first order interpretable in B, and B is FA
presentable, then so is A. Despite the restrictions imposed by finite automata,
there are many natural examples of FA presentable structures, which makes them
an interesting object of study both in mathematics and theoretical computer sci-
ence.

There is a complete characterization of FA presentable structures in certain
classes of algebraic structures such as Boolean algebras or well-ordered sets (ordi-
nals). For example, an infinite Boolean algebra B is FA presentable if and only if
B ∼= Bn

ω for some n, where Bω is the algebra of finite and cofinite subsets of natural
numbers (Khoussainov/Nies/Rubin/Stephan [46]). An ordinal α is FA presentable
if and only if α < ωω (Delhommé [9]).

However, not much is known about FA presentable structures in the other
classes like groups, rings or linear orders. In [48] Khoussainov and Rubin posed
the problem of characterizing automatic abelian groups (Problem 4). One of the
very interesting open questions here is whether the group of rationals (Q,+) is
FA presentable. If we consider torsion-free abelian groups, then the only known
examples of automatic structures in this class were:

(a) the group of integers (Z,+);

(b) Rp = {m/pk : m, k ∈ Z, k > 0}, the group of rationals with denominators
powers of p, where p is a product of different primes;

(c) finite direct products of these groups.

There was even a conjecture that these were all the examples of automatic struc-
tures in this class.

In this chapter we describe new FA presentable torsion-free abelian groups. To
construct such examples, we use the method of amalgamated products. We will
show that under certain conditions the amalgamated product of FA presentable
groups is itself FA presentable.

As the first application of this method, we construct a new presentation of the
group R6, which contains FA recognizable subgroups isomorphic to R2 and R3 (see
Example 6.4.3). Note that the standard presentation of R6 described in Section
6.2 does not have this property.

The main application of this technique is the following theorem.
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Theorem 1.10. For every n > 1, there is a strongly indecomposable FA pre-
sentable torsion-free abelian group of rank n.

Here a torsion-free abelian group A is indecomposable if for all B and C,
A = B ⊕ C implies B = 0 or C = 0. A group is strongly indecomposable if it
does not contain a decomposable subgroup of finite index. Therefore, the groups
from the previous theorem are not isomorphic to the direct products of already
known examples of automatic groups. Hence, they provide us new FA presentable
structures in the class of torsion-free abelian groups.

Oliver and Thomas [68] discovered an interesting characterization of finitely
generated FA presentable abelian groups. A group is called abelian-by-finite if it
contains an abelian subgroup of finite index. The result of Oliver and Thomas
states that if G is a finitely generated group, then G is FA presentable if and only
if it is abelian-by-finite.

Nies and Thomas [66] recently showed that every finitely generated subgroup of
an FA presentable group is abelian-by-finite. In light of this result, it is natural to
ask whether the domain of every finitely generated subgroup in any FA presented
group is FA recognizable. If the answer were positive, then the above mentioned
result would be an easy corollary of the characterization by Oliver and Thomas.
However, the answer is negative. As shown in Akiyama/Frougny/Sakarovitch [1],
there is an automatic presentation of the group Rp where the set of integers is
not FA recognizable. In the last section of this chapter we provide an even more
interesting example of this type.

Theorem 1.11. There is an FA presentation of the group Z × Z, in which the
domain of every nontrivial cyclic subgroup is not FA recognizable.

Note that this contrasts with the standard presentation of Z× Z, where every
cyclic subgroup is FA recognizable.

The material of this chapter is published in Nies and Semukhin [65].
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Chapter 2
A new spectrum of computable models

In this chapter we construct an uncountably categorical theory T such that the
spectrum of computable models of T is equal to {ω}. The chapter is organized
as follows. The next section contains the proof of a computability-theoretic result
that we will use in the construction of the desired theory. In Section 2.2 we
introduce the basic building blocks of the models of this theory, which are called
cubes. Finally, the last section contains the proof our main result. The necessary
background and preliminaries are provided in the General Introduction.

2.1 A computability-theoretic result

Limitwise monotonic functions were introduced by N. G. Khisamiev [41, 42, 43] and
have found a number of applications in computable model theory. In particular,
Khoussainov, Nies, and Shore [47] used them to show that (ω+ 1) \ {0} is realized
as a spectrum. We now introduce a related notion.

Let [ω]<ω denote the collection of all finite sets of natural numbers, and let ∞
be a special symbol. We define the class of S-limitwise monotonic functions from
ω to [ω]<ω ∪ {∞}, where S is an infinite set. This class captures the idea of a
family A0, A1, . . . of uniformly c.e. sets, each of which is either finite or equal to
S (represented by the symbol ∞), such that we can enumerate the set of i’s for
which Ai = S.

Definition 2.1.1. Let S be an infinite set of natural numbers. An S-limitwise
monotonic function is a function f : ω → [ω]<ω ∪ {∞} for which there is a com-
putable function g : ω × ω → [ω]<ω ∪ {∞} such that

1. f(n) = lims g(n, s) for all n, and

2. for all n, s ∈ ω, the following properties hold:

(a) if g(n, s+ 1) 6=∞, then g(n, s) ⊆ g(n, s+ 1),

(b) if g(n, s) =∞, then g(n, s+ 1) =∞, and

(c) if g(n, s) 6=∞ and g(n, s+ 1) =∞, then g(n, s) ⊂ S.

We refer to g as a witness to f being S-limitwise monotonic.

Note that if f is an S-limitwise monotonic function then its witness g can be
chosen to be primitive recursive.

Definition 2.1.2. A collection of finite sets is S-monotonically approximable if it
is equal to {f(n) : f(n) 6=∞} for some S-limitwise monotonic function f .
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The main result of this section is the following computability-theoretic propo-
sition which shows that there is an infinite set S and a family of sets that is not
S-monotonically approximable and has certain properties that will allow us to code
it into a model of an ℵ1-categorical theory.

Proposition 2.1.3. There exist an infinite c.e. set S and uniformly c.e. sets
A0, A1, . . . with the following properties:

1. each Ai is either finite or equal to S,

2. if x ∈ S, then x ∈ Ai for almost all i,

3. if x /∈ S, then x ∈ Ai for only finitely many i,

4. if Ai is finite, then there is a k ∈ Ai such that k /∈ Aj for all j 6= i, and

5. {Ai : |Ai| < ω} is not S-monotonically approximable.

Proof. Let g0, g1, . . . be an effective enumeration of all primitive recursive functions
from ω × ω to [ω]<ω ∪ {∞} such that for all n, s ∈ ω, if ge(n, s + 1) 6= ∞, then
g(n, s) ⊆ g(n, s+ 1), and if g(n, s) =∞, then g(n, s+ 1) =∞.

We want to build a set S and a family A0, A1, . . . to satisfy 1–3 and the re-
quirements Re stating that if ge is a witness to some function f being S-limitwise
monotonic, then {Ai : |Ai| < ω} is not S-monotonically approximable via f .

For each e, we define a procedure for enumerating Ae. We think of the proce-
dures as alternating their steps, with the eth procedure taking place at stages of
the form 〈e, k〉, which we call e-stages. All procedures may enumerate elements
into S. The eth procedure is designed to satisfy Re by ensuring that if ge is a wit-
ness to some function f being S-limitwise monotonic and every f(n) 6=∞ is equal
to some Ai, then Ae is finite and not equal to f(n) for any n. The eth procedure
works as follows.

Let Ae[s] and S[s] denote the sets of all numbers enumerated into Ae and S,
respectively, by the end of stage s.

The main idea is to find an appropriate number ne such that if lims ge(n, s) = Ae
for some n, then n = ne, and let Ae[s] always contain an element not in ge(ne, s),
thus ensuring that either Ae is finite but lims ge(ne, s) 6= Ae or ge(ne, s) is eternally
playing catch-up and hence does not come to a limit.

At the first e-stage s, put 〈e, 0〉, 〈e, 1〉, and all elements of S[s] into Ae. Let
me,s = 1 and let ne be undefined. (For each e-stage t, we will let me,t be the largest
m such that 〈e,m〉 ∈ Ae[t].)

At any other e-stage s, proceed as follows. Let t be the previous e-stage. If ne
is undefined and there is an n 6 s such that ge(n, s) = Ae[t], then let ne = n. If ne
is now defined and ge(ne, s) = Ae[t], then put 〈e,me,t − 1〉 into S, put 〈e,me,t + 1〉
and all elements of S[s] into Ae, and let me,s = me,t+1. Otherwise, let me,s = me,t

and do nothing else.
This finishes the description of the eth procedure. Running all the proce-

dures concurrently, as described above, we build a uniformly c.e. collection of sets
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A0, A1, . . . and a c.e. set S. Now our goal is to show that these sets satisfy the
properties in the statement of the proposition.

Since at every stage s at which we put numbers into Ae we put S[s] into Ae
and the second largest element of Ae[s− 1] into S, every infinite Ae is equal to S.
This shows that the first property in the proposition holds.

Since, for each e, we put S[s] into Ae, where s is the first e-stage, every ele-
ment of S is in cofinitely many Ae’s. This shows that the second property in the
proposition holds.

Since the only way a number of the form 〈e, k〉 can enter Ai for i 6= e is if it
first enters S, every number that is in infinitely many Ai’s must be in S. This
shows that the third property in the proposition holds.

If Ae is finite, then m = limsme,s exists, and 〈e,m〉 is in Ae but not in Aj for
j 6= e. This shows that the fourth property in the proposition holds.

We now show that the last property in the proposition holds. Assume for a
contradiction that {Ai : |Ai| < ω} = {f(n) : f(n) 6= ∞} for some S-limitwise
monotonic function f witnessed by ge. Then ne must eventually be defined, since,
otherwise, Ae is finite but not in the range of f .

First, suppose that f(ne) 6= ∞. At the e-stage s0 at which ne is defined,
ge(ne, s0) contains 〈e, 0〉 and 〈e, 1〉. If there is no e-stage s1 > s0 at which
ge(ne, s1) = Ae[s0], then f(ne) cannot equal any of the Ai’s since Ae is then the
only one of our sets that contains 〈e, 1〉, and 〈e, 1〉 ∈ ge(ne, s0). So, there must be
such an e-stage s1. Note that ge(ne, s1) contains 〈e, 2〉. By the same argument,
there must be an e-stage s2 > s1 such that ge(ne, s2) = Ae[s1], and this set contains
〈e, 3〉. Proceeding in this way, we see that ge(ne, s) never reaches a limit.

Now suppose that f(ne) = ∞. Let s0 be the least s such that ge(ne, s) = ∞,
and let t be the largest e-stage less than s0. It is easy to check that 〈e,me,t − 1〉 ∈
g(ne, t) but 〈e,me,t − 1〉 /∈ S[t]. We never put 〈e,me,t − 1〉 into S after stage t, so,
in fact, 〈e,me,t − 1〉 /∈ S. Since ge(ne, t) ⊆ ge(ne, s0−1), we have ge(ne, s0−1) 6⊂ S,
contradicting the choice of ge.

2.2 Cubes

In this section we introduce a special family of structures which we call cubes.
These will be used in the next section to build an ℵ1-categorical theory. They
generalize the n-cubes and ω-cubes used in [47].

We work in the language L = {Pi : i ∈ ω}, where each Pi is a binary predicate
symbol. We will define structures for sublanguages L′ of L. Any such structure
can be thought of as an L-structure by interpreting the Pi’s not contained in L′
by the empty set. We denote the domain of a structure denoted by a calligraphic
letter such as A by the corresponding roman letter A.

We begin with the following inductive definition of the finite cubes.
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Definition 2.2.1. Base case. For n ∈ ω, an (n)-cube is a structureA = ({a, b};PAn ),
where PAn (x, y) holds if and only if x 6= y.

Inductive Step. Now suppose we have defined the σ-cubes for a non-repeating
sequence σ = (n1, . . . , nk), and let nk+1 /∈ σ. An (n1, . . . , nk, nk+1)-cube is a
structure C defined in the following way. Take two isomorphic σ-cubes A and B
such that A∩B = ∅ and let f : A → B be an isomorphism. Let C be the structure

(A ∪B;PAn1
∪ PBn1

, . . . , PAnk
∪ PBnk

, P Cnk+1
),

where P Cnk+1
(x, y) holds if and only if f(x) = y or f−1(x) = y.

Example 2.2.2. Let σ be a finite non-repeating sequence. Consider A = Z|σ|2 as
a vector space over Z2 with a basis b1, . . . , b|σ|. If we define a structure A with the
domain A by letting PAσ(i)(x, y) iff x+ bi = y, then A is a σ-cube.

The following property of the finite cubes, which is easily checked by induction,
shows that we could have taken Example 2.2.2 as the definition of the σ-cubes.

Lemma 2.2.3. Let σ be a finite non-repeating sequence. Then any two σ-cubes
are isomorphic.

Furthermore, we have the following stronger property.

Lemma 2.2.4. If σ is a finite non-repeating sequence and τ is a permutation of
σ, then every τ -cube is isomorphic to every σ-cube.

Proof. Let A and B be a σ-cube and a τ -cube respectively. By Lemma 2.2.3,
we can assume that A and B are constructed as in Example 2.2.2. Since τ is a
permutation of σ, there is a bijection f such that σ(i) = τ(f(i)). Let ϕ be the
vector space isomorphism induced by taking bi to bf(i). We then have

PAσ(i)(x, y) iff x+ bi = y iff ϕ(x) + ϕ(bi) = ϕ(y)

iff ϕ(x) + bf(i) = ϕ(y) iff PBτ(f(i))(ϕ(x), ϕ(y)) iff PBσ(i)(ϕ(x), ϕ(y)).

Thus ϕ is an isomorphism from A to B.

So, instead of a “σ-cube”, where σ = (n1, . . . , nk), we can write an “A-cube”,
where A = {n1, . . . , nk}. (This notation matches that of [47], if we make the usual
set-theoretic identification of n with {0, . . . , n− 1}.)

We now define the infinite cubes.

Definition 2.2.5. Let α = (n0, n1, . . .) be an infinite non-repeating sequence of
natural numbers. An α-cube is a structure of the form

⋃
i∈ωAi where each Ai is

an {n0, . . . , ni}-cube and Ai ⊂ Ai+1.

18



As with the finite sequences, the order of an infinite sequence α does not affect
the isomorphism type of the corresponding infinite cubes. So, we can talk about
S-cubes, where S is an infinite set. To show that this is the case, we will use the
following fact, which is easy to check. Suppose that A ⊂ B ⊂ C are finite, Z
is a C-cube, and X ⊂ Z is an A-cube. Then there exists a B-cube Y such that
X ⊂ Y ⊂ Z.

Lemma 2.2.6. If σ is an infinite non-repeating sequence and τ is a permutation
of σ, then every τ -cube is isomorphic to every σ-cube.

Proof. Let σ = (m0,m1, . . .) be an infinite non-repeating sequence, and let τ =
(n0, n1, . . .) be a permutation of σ. Let si = {m0, . . . ,mi} and ti = {n0, . . . , ni}.

Let A be a σ-cube and let B be a τ -cube. Then A =
⋃
i∈ωAi, where each Ai is

an si-cube and Ai ⊂ Ai+1. Similarly, B =
⋃
i∈ω Bi, where each Bi is a ti-cube and

Bi ⊂ Bi+1.
We build a sequence of finite partial isomorphisms ϕ0 ⊆ ϕ1 ⊆ · · · such that

Ai ⊆ domϕ2i+1 and Bi ⊆ rngϕ2i+2. We begin with ϕ0 = ∅.
Given ϕ2i, let k > i be such that Ak ⊇ domϕ2i, and let l be such that Bl ⊇

rngϕ2i and sk ⊆ tl. Then there is an sk-cube C ⊆ Bl such that rngϕ2i ⊆ C.
Extend ϕ2i to an isomorphism ϕ2i+1 : Ak → C.

Given ϕ2i+1, proceed in an analogous fashion to define a finite partial isomor-
phism ϕ2i+2 including Bi in its range.

Now ϕ =
⋃
i∈ω ϕi is an isomorphism from A to B.

2.3 The Main Theorem

In this section we prove the main result of this chapter.

Theorem 2.3.1. There exists an ℵ1-categorical but not ℵ0-categorical theory whose
only computably presentable model is the countable saturated one.

Proof. Let {Ai}i∈ω and S be as in Proposition 2.1.3. Fix an enumeration of {Ai}i∈ω
such that at each stage exactly one element is enumerated into some Ai. (For
instance, we can take the enumeration given in the proof of Proposition 2.1.3.)
Construct a computable modelMω =

⋃
n∈ωMn

ω as follows. Begin withMn
ω[0] = ∅

for all n. At stage s+1, if An[s+1] 6= An[s] then extendMn
ω[s] to an An[s+1]-cube

using fresh large numbers.
It is clear that this procedure can be carried out effectively. So, Mω is com-

putable. Furthermore,Mω is the disjoint union of one An-cube for each n ∈ ω. In
particular, every infinite cube in Mω is an S-cube.

Now let T = Th(Mω) be the first-order theory of Mω. We show that T is
ℵ1-categorical but not ℵ0-categorical, Mω is countable saturated, and the only
computably presentable model of T (up to isomorphism) is Mω.
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We begin by showing that T is ℵ1-categorical. Since T includes sentences saying
that, for each n and x, there is at most one y such that Pn(x, y), we are free to
use the functional notation and write Pn(x) = y instead of Pn(x, y). For n ∈ S,
let k(n) be the number of elements x ∈ Mω for which PMω

n (x) is not defined. For
n /∈ S, let k(n) be the number of elements x ∈ Mω for which PMω

n (x) is defined.
Note that k(n) is finite for all n.

It is easy to see thatMω satisfies the following list of statements which can be
written as an infinite set Σ ⊂ T of first-order sentences:

1. For each n, the relation Pn is a partial one-to-one function and Pn(x) = y →
Pn(y) = x.

2. For all n 6= m and all x, we have Pn(x) 6= Pm(x) and Pn(x) 6= x.

3. For all n 6= m and all x, if Pn(x) and PmPn(x) are defined, then Pm(x) and
PnPm(x) are defined, and PnPm(x) = PmPn(x).

4. For all k, all n > n1 > n2 > · · · > nk, and all x, we have Pn1 . . . Pnk
(x) 6=

Pn(x).

5. For each n ∈ S, there are exactly k(n) many elements x for which Pn(x) is
not defined.

6. For each n /∈ S, there are exactly k(n) many elements x for which Pn(x) is
defined.

7. If Ai is finite and m ∈ Ai is such that m /∈ Aj for all j 6= i, then there exists
a finite Ai-cube Ci such that ∀x (Pm(x) is defined → x ∈ Ci). (Note that
m /∈ S and Ci has k(m) many elements, so, together with Statements 3 and
6, this statement implies that Ci is not contained in a larger cube.)

Remark 2.3.2. Note that Statements 1 and 3 imply the following: for all n 6= m
and all u, if Pn(u) and Pm(u) are defined then PmPn(u) and PnPm(u) are defined
and equal. To prove this let v = Pn(u). By Statement 1, this implies that Pn(v) =
u. Since PmPn(v) = Pm(u) is defined, by applying Statement 3 with x = v, we
have that Pm(v) and PnPm(v) are defined, and PnPm(v) = PmPn(v). If we let
w = Pm(v), then PmPn(u) = w. Since Pn(w) = PnPm(v) = PmPn(v) = Pm(u),
Statement 1 implies that PnPm(u) = PnPn(w) = w. Thus PmPn(u) = PnPm(u).

Now suppose that M is a model of Σ. Let A ⊆ ω and x ∈ M . Using the
statements above, it is easy to check that ∀n ∈ A (PMn (x) is defined) if and only
if x belongs to an A-cube. It is also clear that if C1 and C2 are A-cubes in M and
C1 ∩ C2 6= ∅, then C1 = C2.

It follows that M is the disjoint union of the components M0 and M1, where
M0 is the disjoint union of exactly one Ai-cube for each finite Ai. Let x ∈M1. If
n ∈ S, then there are k(n) elements in M0 on which PMn is not defined. Statement
5 says that there are exactly k(n) such elements in M . Hence PMn (x) is defined.
Similarly, Statement 6 implies that if n /∈ S, then PMn (x) is not defined. Therefore,
x belongs to an S-cube. Thus, M1 is a disjoint union of S-cubes.
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Let C be the class of all the structures that are the disjoint unions of exactly one
Ai-cube for each finite Ai and some finite or infinite number of S-cubes. Clearly,
any structure in C is a model of Σ, and we have shown that any model of Σ is
in C. Let M be a model of Σ. Each of the S-cubes in M is countable, so if
|M | = ℵ1, then there must be ℵ1 many such S-cubes. Therefore, any two models
of Σ of size ℵ1 are isomorphic, and hence Σ is uncountably categorical. It now
follows by the  Loś-Vaught Test that any model of Σ is a model of T . Thus T
is uncountably categorical and, since C contains infinitely many nonisomorphic
countable structures, T is not countably categorical.

Lemma 2.3.3. Let M be a computable model of T . Then M contains infinitely
many S-cubes.

Proof. Assume for a contradiction that M contains a finite number r of S-cubes
(which may be 0). We can assume without loss of generality that the domain of
M is ω. Let Ms be the structure obtained by restricting the domain of M to
{0, . . . , s} and the language to P0, . . . , Ps. Choose one element from each S-cube,
say c1, . . . , cr. Define a computable function g : ω × ω → [ω]<ω ∪ {∞} as follows.

If x > s, then g(x, s) = ∅. If x is connected to some ci inMs, then g(x, s) =∞.
Otherwise, g(x, s) is the set of all k 6 s for which there is a y 6 s such that
PMk (x, y).

Clearly, g(x, s) is computable. Also, if x belongs to some Ai-cube in M, then
g(x, s) ⊆ Ai, and if g(x, s) = ∞, then x must belong to an S-cube. It is now
easy to check that f(x) = lims g(x, s) is S-limitwise monotonic and {f(x) : f(x) 6=
∞} = {Ai : |Ai| < ω}. But this contradicts the fact that {Ai : |Ai| < ω} is not
S-monotonically approximable.

Since Mω is computable, it contains infinitely many S-cubes and, therefore,
is countable saturated. The other countable models of T have only finitely many
S-cubes and hence do not have computable presentations.
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Chapter 3
Computably categorical saturated
models

The main result of this chapter is the construction of a computably categorical sat-
urated model whose theory is not ℵ0-categorical. The introduction to this problem
and the necessary background are presented in the General Introduction. The out-
line of the chapter is as follows.

In the first section we construct a specific uniformly computably enumerable
family {Bx}x∈ω of subsets of natural numbers. The definition of the family is based
on the notion of Kolmogorov complexity. We also prove that some special enumer-
ations of the family are equivalent to each other via computable permutations.

In Section 3.2 we provide an example of a countable saturated not ℵ0-categorical
model with exactly one computable isomorphism type. The idea is to code the
family {Bx}x∈ω from the previous section into a saturated structure so that the
computable copies of the structure induce the special enumerations of the family.
The construction of this structure is based on the well-known model-theoretic
concept of Fräıssé limits.

In Section 3.3 of the chapter we also address a question of S. Goncharov that
asks if there exists an ℵ1-categorical but not ℵ0-categorical countable saturated
model that has a unique computable isomorphism type. We partially answer the
question of Goncharov positively by providing a saturated computably categori-
cal Σ0

1-structure whose theory is ℵ1- but not ℵ0-categorical. Unfortunately, the
structure is not computable. Our construction encodes the family {Bx}x∈ω.

In Section 3.4 we provide an alternative proof of the main result in [47]. There,
an ℵ1-categorical but not ℵ0-categorical theory T is constructed such that all mod-
els of T but the prime are computable. Our construction is again based on coding
the family {Bx}x∈ω into an ℵ1-categorical but not ℵ0-categorical theory.

3.1 The role of Kolmogorov Complexity

The first result is the construction of an auxiliary family of computably enumerable
sets B0, B1, . . . with the following properties:

• every finite member of this family occurs only once;

• all infinite members are equal and occur infinitely often in every computable
enumeration of the family.

The construction goes as follows. Let U be a universal partial computable function
in the sense that for every further partial computable function ψ, there is a constant
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c such that for all x in the domain of ψ, there is a y 6 c(x+ 1) with U(y) = ψ(x).
Then the Kolmogorov complexity C (based on U) of any number z is defined as

C(z) = min{log(x) : U(x)↓= z},

where the logarithm log(x) is defined as the smallest natural number y with 2y > x.
The rationale behind this definition is that it should roughly invert exponentiation,
have base 2, and avoid undefined places, proper fractions, and irrational numbers.
Note that C(z) > log(z) for infinitely many z. The reader should consult standard
textbooks [5, 56, 67, 71] for more information on Kolmogorov Complexity and
Computability Theory. The family in question is now defined as follows.

Definition 3.1.1. Let A = {x : C(x) < log(x)} be the set of compressible or
nonrandom numbers. Define

Bx =

{
{x} ∪ {y ∈ A : y < log(x)} if x /∈ A;

A if x ∈ A.

The family B0, B1, . . . is uniformly computably enumerable as {x} ∪ {y ∈ A :
y < log(x)} ⊆ Bx for all x and the set A is computably enumerable. So, a uniform
enumeration of the Bx’s starts with an enumeration of {x} ∪ {y ∈ A : y < log(x)}
for each x and later adds all other elements of A in the case when x turns out to
be an element of A.

Theorem 3.1.2. If E0, E1, . . . is a computable enumeration of c.e. sets such that
for every x, there is y with Ex = By, and for every y /∈ A, there is a unique x with
By = Ex, then there is a computable permutation f with By = Ef(y) for all y.

Proof. For every y /∈ A, there is a unique x with y ∈ Ex. As every y ∈ A satisfies
y ∈ Ex for almost all x, one has that there are infinitely many x with y ∈ Ex.
Thus there is a computable function g such that y ∈ Eg(y) for all y. This function
can be obtained by searching in parallel in all E0, E1, . . . until an x with y ∈ Ex is
found.

If y /∈ A, then Eg(y) = By as By is the unique set in the enumeration B0, B1, . . .
containing y. Thus Eg(y) has to be equal to By. If y ∈ A and Eg(y) = A, then
By = Eg(y). If y ∈ A but Eg(y) = Bx for some x /∈ A, then y < log(x) and x is the
unique element of Eg(y) which is larger than log(x). Thus one can compute x from
y and log(x). As the Cantor pairing function is invertible, one can also compute x
from (y + log(x))(y + log(x) + 1)/2 + log(x). As y < log(x), the logarithm of this
expression is roughly 2 log log(x). So, on the one hand, there is a constant c1 with
C(x) 6 2 log log(x) + c1. On the other hand, log(x) 6 C(x) as x /∈ A. Therefore,
log(x) 6 2 log log(x) + c1 and hence there are only finitely many such x. Thus it
follows that g satisfies Eg(y) = By for all but finitely many y. Since the errors occur
on finitely many y ∈ A, the other elements of A are mapped to Ex’s with Ex = A.
By modifying g at finitely many places, one obtains that ∀y (Eg(y) = By). Note
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that A occurs in the enumeration E0, E1, . . . infinitely often as A is not computable
and cannot be of the form g−1(D) for any finite set D.

Now let I be an infinite computable subset of A which includes all the y’s
satisfying the condition g(y) ∈ {g(z) : z < y}. Furthermore, let x be any index.
If Ex = By for a y /∈ A, then one can compute y from x by inverting g, and
hence C(y) 6 C(x) + c2 for some constant c2. As y is incompressible, log(y) 6
C(x) + c2 6 log(x) + c3 for some constant c3. Thus one knows that whenever
x 6= g(y) for all y with log(y) 6 log(x) + c3, then Ex = A. So, the set of all x with
Ex = A is computably enumerable: Ex = A iff either g(y) = x for some y ∈ A or
g(y) 6= x for finitely many y’s with log(y) 6 log(x) + c3. In particular, there is an
infinite computable set J such that Ex = A for all x ∈ J and J ∪ g(N) = N.

Now define f(y) to be the n-th element of J whenever y is the n-th element of
the computable set I ∪ g−1(J), and let f(y) = g(y) otherwise. Again, Ef(y) = By

for all y as f coincides with g on those y’s for which By is finite, while f is modified
from one index of A to another in the case when y ∈ I ∪ g−1(J). Furthermore, by
the construction, f is a permutation. It is also easy to see that f is computable.

3.2 The first application

Our main result in this section is the following theorem.

Theorem 3.2.1. There exists a countable saturated not ℵ0-categorical model that
has a unique computable isomorphism type.

We need to recall the construction of Fräıssé limits. Let K be a class of finite
structures closed under isomorphisms. We assume that the language of the struc-
tures is finite and contains only relational symbols. Assume that the class K has
the following properties:

1. Hereditary property (HP): for all A ∈ K, if B is a substructure of A, then
B ∈ K.

2. Joint embedding property (JEP): for all A,B ∈ K, there exists a C ∈ K such
that A and B can be embedded into C.

3. Amalgamation property (AP): for all A,B,C ∈ K, if f : A→ C and g : A→
B are embeddings, then there exists a structure D ∈ K and embeddings
h : B → D and k : C → D such that kf = hg on A.

A structure D is called weakly homogeneous if it has the property

if A, B are finite substructures of D, A ⊆ B, and f : A → D is an
embedding, then there is an embedding g : B → D which extends f .
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A structure is called ultrahomogeneous if any finite partial isomorphism of the
structure into itself can be extended to an automorphism. A finite or countable
structure is ultrahomogeneous if and only if it is weakly homogeneous (see Lemma
7.1.4(b) in [33]).

The age of a structure D is the class of all finite structures embeddable in D.
There is a well-known result in model theory that connects the ultrahomogeneous
structures with the classes K that possess the properties HP, JEP, and AP. It is
stated in the following theorem.

Theorem 3.2.2. For any class K that has HP, JEP, and AP, there exists a unique
at most countable ultrahomogeneous structure lim(K) whose age coincides with K.
Moreover, under our assumption on the language of K, the structure lim(K) is
ℵ0-categorical.

The structure lim(K) is called the Fräıssé limit of the class K. We restate this
theorem with an eye towards computable categoricity.

Theorem 3.2.3. Let K be a class of finite structures with the following properties.

1. K has the properties HP, JEP, and AP.

2. There exists a sequence H0, H1, . . . such that

• {Hn | n ∈ ω} ⊆ K and each A ∈ K is isomorphic to some Hn;

• the domain and the atomic diagram of Hn is computable uniformly in
n;

• the function n 7→ |Hn| is computable.

Then the Fräıssé limit of K is a computably categorical structure.

Proof. First, show that the Fräıssé limit of K is computable. Let {(Ai, Bi)}i∈ω be
a computable enumeration of pairs of structures from K such that Ai ⊆ Bi and for
every pair A,B ∈ K with A ⊆ B, there exist an i and an isomorphism f : B → Bi

such that f(A) = Ai. We now construct a computable structure D as follows. Let
D0 = H0. Suppose that Dk has been constructed. By applying the AP property
the necessary number of times, one can show that there is an isomorphic copy H ′n
of some Hn ∈ K such that Dk ⊆ H ′n, and for all i 6 k, if Ai can be embedded in
Dk, then for every embedding f : Ai → Dk, there is an embedding g : Bi → H ′n
extending f . For every n, we can effectively check whether there is a copy of Hn

satisfying the condition above. So, let Dk+1 be an isomorphic copy of Hn with the
minimal index n satisfying that condition.

Now consider a computable structure D =
⋃
k<ωDk. Since each Dk is in K

and K possesses the HP property, the age of D is included in K. Suppose A is
in K; then, by the JEP, there are B ∈ K such that D0 ⊆ B and an embedding
h : A→ B. Now let a pair (Ai, Bi) be such that there is an isomorphism f : Bi → B
with f(Ai) = D0. By the construction, the embedding f �Ai : Ai → D0 extends to
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an embedding g : Bi → D. Hence, both B and A are in the age of D. Therefore,
the age of D is exactly K.

Let A ⊆ B be finite substructures of D and h : A → D be an embedding.
Since A,B ∈ K, there are a pair (Ai, Bi) and an isomorphism f : Bi → B with
f(Ai) = A. Furthermore, there is k > i such that hf �Ai is an embedding of Ai
into Dk. By the construction, hf � Ai extends to an embedding g : Bi → Dk+1.
Now gf−1 : B → D is an embedding that extends h. This proves that D is weakly
homogeneous and hence ultrahomogeneous. Therefore, D is the Fräıssé limit of
the class K.

We now show that D is computably categorical. Let D′ be a computable
structure isomorphic to D; then there is a computable chain {D′k}k<ω of finite
structures such that D′ =

⋃
k<ωD

′
k. We construct a computable isomorphism

from D to D′ as follows. Let f0 be an embedding of D0 into D′. Suppose that
a finite partial embedding fn has been constructed. If n = 2m, then look for the
smallest k > m such that Dom(fn) ⊆ Dk. Since D′ is weakly homogeneous, there
is an embedding g : Dk → D′ that extends fn, and it can be found effectively.
So, let fn+1 = g. If n = 2m + 1, then look for the smallest k > m such that
Im(fn) ⊆ D′k. Since D is weakly homogeneous, there is an embedding g : D′k → D
that extends f−1

n . So, let fn+1 = g−1. Thus f =
⋃
n<ω

fn : D → D′ is a computable

isomorphism.

We now define special classes of finite structures that have the properties HP,
JEP, and AP. A cycle of length n > 3 is the graph Cn = ({1, . . . , n}, E) with
E = {(1, 2), (2, 1), (2, 3), (3, 2), . . ., (n − 1, n), (n, n − 1),(n, 1), (1, n)}. We say
that a graph contains a cycle of length n if there exists an embedding from Cn into
the graph.

Let Y be a non-empty subset of the natural numbers. Consider the following
class of finite directed graphs:

K(Y ) = {(V,E) | if (V,E) contains a cycle of length n+ 3, then n ∈ Y }.

Lemma 3.2.4. The class K(Y ) possesses the properties HP, JEP, and AP.

Proof. It is easy to see that K(Y ) satisfies the properties HP and JEP. We prove
that K(Y ) satisfies AP. Let A,B,C be graphs in K(Y ) such that A is a subgraph
of B and C and the domain of A is the intersection of the domains of B and C.
Define the graph D as follows. The domain of D is the union of the domains of B
and C. The graph D contains all the edges of the graphs B and C. In addition,
D contains all the edges of the form (b, c), where b ∈ B \ A and c ∈ C \ A. It is
not hard to see that the graph D built in this way belongs to K(Y ).

We construct the desired structure Cω as follows. To do this, we use the family
{Bx}x∈ω from the previous section. For each Bx, consider the limit structure
limK(Bx). One can construct a sequence
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limK(B0), limK(B1), limK(B2), . . .

of these structures so that the following properties hold:

1) the graphs in this sequence are all pairwise disjoint;

2) the union of the domains of these graphs is ω;

3) the sequence is uniformly computable meaning that the set {(n,m) | m ∈
limK(Bn)} is computable.

The signature of Cω consists of two binary relational symbols R and S. The
domain of Cω is ω. The relation R is the union of all the edges of the graphs that
appear in the sequence above. The relation S consists of all the pairs (n,m) such
that n,m belong to the same graph limK(Bx) for some x. Clearly, S is a com-
putable equivalence relation. Thus, the structure Cω constructed is computable.
Our goal now is to show that Cω satisfies the theorem stated in the beginning of
this section.

Lemma 3.2.5. The structure Cω is computably categorical.

Proof. Let D be any computable structure isomorphic to Cω. Since the equiva-
lence relation S in D is computable, there is a computable sequence {xi}i∈ω which
consists of exactly one representative for each S-equivalence-class. Let Ei be a set
such that the substructure of D with the domain [xi]S, the S-equivalence-class of
xi, is isomorphic to limK(Ei). Using the fact that D is computable, one can show
that the sequence {Ei}i∈ω is uniformly computably enumerable. Furthermore, for
every x, there is y with Ex = By, and for every y /∈ A, there is a unique x with
By = Ex. Thus, by Theorem 3.1.2, there is a computable permutation f such
that Bi = Ef(i) for all i. By Theorem 3.2.3, limK(Bi) is a computably categori-
cal structure. Note that the construction of the computable isomorphism between
limK(Bi) and limK(Ef(i)) can be done uniformly in i. Therefore, D is computably
isomorphic to Cω.

Let T = Th(Cω) be the first-order theory of Cω. Our goal is to show that
Cω is the countable saturated model of T . This is proved in the Lemma 3.2.6
below, which also characterizes the isomorphism types of the countable models of
T . Call an S-equivalence-class non-standard if the restriction of R to this class is
isomorphic to the Fräıssé limit limK(A). Consider the subsequence

limK(Bn0), limK(Bn1), limK(Bn2), . . .

of the sequence
limK(B0), limK(B1), limK(B2), . . . ,

where n0, n1, . . . is the list of all numbers outside of A in increasing order. Consider
the substructure of Cω restricted to the subsequence above and denote it C0. Let
Cn be the structure obtained by adjoining to C0 exactly n many copies of non-
standard S-equivalence-classes.
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Lemma 3.2.6. The theory T satisfies the following properties.

1. C0 is the prime model of T .

2. The class of all countable models of T is {C0, C1, C2, . . . , Cω}.
3. Cω is the countable saturated model of T .

Proof. Let us write down the axioms of T . First, note that the fact that x and
y lie in the same component limK(Bn) of Cω can be expressed by a first-order
formula. Indeed, let x, y ∈ limK(Bn) for some n. Suppose that there is no edge
from x to y and from y to x. Let B be the substructure of limK(Bn) with domain
{x, y}. Let D be a graph with domain {x, y, z} that extends B and contains the
additional edges (x, z), (z, y). Note that D is in K(Bn) since it does not contain
any cycle. By the weak homogeneity of limK(Bn), there is an embedding of D into
limK(Bn) which extends the identity embedding on B. Therefore, we can express
the fact that x, y belong to the same limK(Bn) by the formula

ϕ(x, y) = R(x, y) ∨R(y, x) ∨ ∃z(R(x, z) ∧R(z, y)).

We use the notation {c̄} for the set consisting of the elements of the tuple c̄.
Let ψn(x0, . . . , xn−1) be a formula such that for any graph B

B |= ψn(b̄) if and only if {b̄} is a cycle of length n in B.

For any graph B and n-tuple of distinct elements b̄ such that B = {b̄}, let
ψB,b̄(x0, . . . , xn−1) be the conjunction of the formulas R(xi, xj) or ¬R(xi, xj) sat-
isfied by b̄ in B. Thus, for any graph D and a tuple d̄ ∈ D of the same length as
b̄,

D |= ψB,b̄(d̄) iff there is an isomorphism from B to {d̄} which takes b̄ to d̄.

Let Sn(x) be the formula which says the S-equivalence-class of x contains a cycle
of length n+ 3, that is

Sn(x) = ∃ȳ
(
ψn+3(ȳ) ∧

∧
i6n−1

S(x, yi)
)
.

We also use the abbreviation x̄ ∈ Sn for the formula
∧

i6n−1

Sn(xi), and x̄ ∈ [z] for

the formula
∧

i6n−1

S(xi, z), where x̄ = x0, . . . , xn−1. Let U be the following list of

axioms.

(Ax0) S is an equivalence relation.

(Ax1) S(x, y)→ R(x, y) ∨R(y, x) ∨ ∃z(R(x, z) ∧R(z, y)).

For every n:

(Ax2
n) ¬S(x, y)→ ¬∃x0, . . . , xn+1

(
x0 = x∧xn+1 = y∧

∧
i6n

(R(xi, xi+1)∨R(xi+1, xi))
)
.
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For every n /∈ A:

(Ax3
n) ∃x (Sn(x) ∧ ∀y (Sn(y)→ S(x, y))).

For every n /∈ A, every B,D ∈ K(Bn) and every tuple b̄d of distinct elements
such that B = {b̄} and D = {b̄d}:
(Ax4

n,B,D,b̄d) (∀x̄ ∈ Sn) (ψB,b̄(x̄)→ (∃y ∈ Sn) ψD,b̄d(x̄, y)).

If b̄ is empty, then this sentence reduces to (∃y ∈ Sn) ψD,d(y).

For every n /∈ A:

(Ax5
n) (∀x̄ ∈ Sn)

∨
B,b̄

ψB,b̄(x̄),

where the disjunction ranges over all pairs B, b̄ such that B ∈ K(Bn) and b̄ is a
tuple of the same length as x̄ with B = {b̄}. Note that this disjunction is finite.

For every B,D ∈ K(A) and every tuple b̄d of distinct elements such that
B = {b̄} and D = {b̄d}:

(Ax6
B,D,b̄d) ∀z

(( ∧
i6k−1

¬Sni
(z)
)
→

(∀x̄ ∈ [z]) (ψB,b̄(x̄)→ (∃y ∈ [z]) ψD,b̄d(x̄, y))
)
,

where n0, . . . , nk−1 are the indices of all the components limK(Bn) of Cω into which
D can not be embedded. Note that ni /∈ A for all i 6 k − 1. If b̄ is empty, then
this sentence reduces to

∀z
(( ∧

i6k−1

¬Sni
(z)
)
→ (∃y ∈ [z]) ψD,d(y)

)
.

Let M be a countable model of U . The axioms Ax0, Ax1, and Ax2
n imply

that S is an equivalence relation and that every S-equivalence-class is a connected
component of M . For every n /∈ A, Ax3

n states that there is a unique component
that contains a cycle of length n+ 3. Denote this component by Mn.

When b̄ is empty, Ax4
n says that every one-element structure in K(Bn) is em-

beddable in Mn. In general, Ax4
n says that

if B, D are finite structures in K(Bn), D comes from B by adding
one more element, and f : B → Mn is an embedding, then there is an
embedding g : D →Mn which extends f .

Using induction on the number of elements, it is not hard to see that every structure
in K(Bn) is embeddable in Mn. On the other hand, Ax5

n implies that any finite
substructure of Mn is in K(Bn). Thus, the age of Mn is exactly K(Bn).

Using Ax4
n again and the induction on the size of D \B, we can show that

if B,D ∈ K(Bn), B ⊆ D, and f : B →Mn is an embedding, then there
is an embedding g : D →Mn which extends f .
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Thus Mn is a weakly homogeneous (and hence ultrahomogeneous) model of the
age K(Bn). Therefore, Mn is isomorphic to limK(Bn). Note that, in particular, it
means that Mn 6= Mk whenever n 6= k.

Let M∗ be a connected component of M that is different from all the Mn’s. As
shown above, any cycle of length n + 3, for n /∈ A, can appear only in Mn. So,
the age of M∗ is included in K(A). Let D be a one-element structure in K(A);
then Ax6 implies that D is embeddable in M∗. Now let B,D ∈ K(A), D comes
from B by adding one more element, and f : B → M∗ is an embedding. Suppose
that D is not embeddable in limK(Bn0), . . . , limK(Bnk−1

), where ni /∈ A for all
i 6 k − 1. In this case Ax6 states that the embedding of B into any component
of M other than Mn0 , . . . ,Mnk−1

can be extended to an embedding of D into the
same component. In particular, f can be extended to an embedding g : D →M∗.
Now, using induction on the size of D, it is not hard to show that every D ∈ K(A)
is embeddable in M∗. Therefore, the age of M∗ is exactly K(A).

Again, induction on the size of D \ B tells us that if B,D ∈ K(A), B ⊆ D,
and f : B → M∗ is an embedding, then there is an embedding g : D → M∗ which
extends f . Thus M∗ is a weakly homogeneous structure of the age K(A) and,
therefore, is isomorphic to limK(A).

So, any countable model of U consists of exactly one component isomorphic
to limK(Bn), for n /∈ A, and a finite or infinite number of components iso-
morphic to limK(A). In other words, the class of all countable models of U is
{C0, C1, C2, . . . , Cω}.

We now show that for every i ∈ ω, Ci is elementarily equivalent to Cω. To do
this, we will use the method of Ehrenfeucht-Fräıssé games.

Definition 3.2.7. Let A and B be structures of the same language L and let γ
be an ordinal. Then EFγ[A,B], the unnested Ehrenfeucht-Fräıssé game of length
γ on A and B, is defined as follows. There are two players ∀ and ∃. The game is
played in γ steps. At the ith step of the play, player ∀ takes one of the structures
A, B and chooses an element of this structure; then player ∃ chooses an element
of the other structure. Each player is allowed to see and remember all previous
moves in the play. At the end of the play, the sequences ā = (ai : i < γ) ∈ A and
b̄ = (bi : i < γ) ∈ B have been chosen. The pair (ā, b̄) is known as the play. We
say that player ∃ wins the play (ā, b̄) iff

for every unnested atomic formula ϕ of L, A |= ϕ(ā)⇔ B |= ϕ(b̄).

Note that if the language L contains no function symbols or constants, as in
our case, then every formula of L is unnested. We write A ≈γ B to mean that
player ∃ has a winning strategy for the game EFγ[A,B].

Theorem 3.2.8. Let L be a finite first-order language. Then for any two L-
structures A and B, the following are equivalent.

(I) A ≡ B.

(II) For every k < ω, A ≈k B.
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For the proof and more details see chapters 3.2 and 3.3 in Hodges [33]. Now,
let us fix any i and k and show that player ∃ has a winning strategy for the game
EFk[Ci, Cω].

The strategy for player ∃ that is described below has the following property.
At the beginning of every step s, the sequences ās−1 = (a0, . . . , as−1), b̄s−1 =
(b0, . . . , bs−1) have been chosen by the players ∀ and ∃ such that the substructures
{ās−1} and {b̄s−1} of Ci and Cω, respectively, are isomorphic via the isomorphism
that maps ās−1 to b̄s−1. Moreover, for every t < s, if at ∈ limK(Bn) and bt ∈
limK(Bm), then either

(a) n /∈ A, log(n) 6 k − 3 and n = m, or

(b) n /∈ A⇒ k − 3 < log(n) and m /∈ A⇒ k − 3 < log(m).

In both cases, we have that Bn ∩ [0, k − 3] = Bm ∩ [0, k − 3], and hence any
substructure of limK(Bn) with at most k elements is embeddable into limK(Bm),
and vice versa.

Now suppose that at step s player ∀ has chosen as ∈ Ci. Then player ∃
chooses bs ∈ Cω such that the substructures {ās} and {b̄s} are isomorphic via the
isomorphism that maps ās to b̄s. Also, if as lies in the same component as at
for some t < s, then bs has to be in the same component as bt. The fact that
|ās| 6 k ensures that player ∃ can always find such bs. If the component of as
does not contain any at for t < s, then player ∃ chooses bs such that bs is not in
a component containing any bt, for t < s, and that either the property (a) or (b)
given above holds for the pair (as, bs). Obviously, player ∃ can always find such a
component because there are infinitely many components in both Ci and Cω which
are isomorphic either to limK(A) or to limK(Bn) for n /∈ A and k < log(n).

The case when player ∀ has chosen bs ∈ Cω is similar to the above.
It is not hard to see that this strategy is indeed a winning strategy for player

∃. Therefore, all the structures C0, C1, . . . , Cω are elementary equivalent to each
other, and U is the set of axioms for T = Th(Cω). Since T has countably many
countable models, T has a countable saturated model and a prime model (see e.g.
Corollary 4.3.8 in Marker [59]). None of the {Ci : i < ω} can be the saturated
model because Cω is not embeddable into any Ci. So, we can conclude that Cω is
in fact the countable saturated model of T .

3.3 The second application

In this section we partially answer the question of Goncharov about the existence
of an ℵ1-categorical but not ℵ0-categorical saturated structure with a unique com-
putable isomorphism type. Our answer is affirmative if one considers Σ0

1-structures
rather than computable structures. Here is the result.
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Theorem 3.3.1. There is a ℵ1-categorical but not ℵ0-categorical theory whose
countable saturated model is a computably categorical Σ0

1-structure.

Proof. We use the family {Bx}x∈ω constructed in Section 3.1. The language of the
desired structure is given by the family P0, P1, . . . of unary predicates. Define the
structure M as follows. The domain of the structure is the set of natural numbers.
For each x and y, Py(x) holds if and only if y ∈ Bx. Obviously, the structure is
Σ0

1.
Let T be the first-order theory of M . It can be described by the following set

of axioms.

For every i /∈ A:

(Ax1
i ) There is a unique z such that Pi(z).

For i /∈ A, let ci be a new constant interpreted as an element on which Pi holds.
The axioms Ax1

i imply that these constants are definable in the original language.

For every i ∈ A:

(Ax2
i )

∧
{j: i/∈Bj}

¬Pi(cj) ∧ ∀z
(( ∧
{j: i/∈Bj}

z 6= cj

)
→ Pi(z)

)
,

that is, Pi holds almost everywhere and does not hold only on the constants cj for
i /∈ Bj. Note that if i ∈ A, then the set {j : i /∈ Bj} is finite; thus the conjunctions
in Ax2

i are finite, and this is a first-order formula.

The theory T is not ℵ0-categorical since the prime model is given by the sub-
structure of M with the domain N− A. The theory T is ℵ1-categorical since any
model of cardinality κ > ℵ0 consists of the following elements:

• one element x with {n | Pn(x)} = B, for every finite set B in the enumeration
{By}y∈ω;

• κ many elements x with {n | Pn(x)} = A.

The statement about Σ0
1-categoricity can be proved by considering any further

Σ0
1-model M ′ with the domain N that is isomorphic to M ; such a model defines

a computable enumeration E0, E1, . . . with n ∈ Ey ⇔ Pn(y). It is easy to see
that every Bx with x /∈ A appears in this enumeration only once, and that every
Ey equals some Bx. By Theorem 3.1.2, there exists a computable permutation f
such that Ef(x) = Bx for all x. This computable permutation clearly induces a
computable isomorphism between two Σ0

1-structures M and M ′.
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3.4 The third application

Khoussainov, Nies, and Shore [47] gave an example of an ℵ1-categorical but not
ℵ0-categorical theory such that all models of the theory except the prime one are
computable. In this section we provide an alternative proof of this result using the
family {Bx} constructed in the Section 3.1.

To code this family, we generalize the notion of “cubes” introduced in [47]. Fix
a language L consisting of binary relation symbols Fn (for n ∈ ω), which we assume
to be symmetric and irreflexive relations coding the edges of a hypercube. Each
such cube is constructed from a given c.e. set X of parameters and has dimension
|X|. For each element n of the set X, the edges along one dimension are realized
by the relation Fn. More formally, this is done as follows.

For any subset X of ω, let the domain of the default presentation of an X-cube
be the set {

∑
m∈Y 2m : Y ⊆ X ∧ Y is finite} with

∑
m∈∅ 2m = 0. On this domain,

define the relation Fn(x, y) to be true iff there is a finite subset Y ⊆ X −{n} such
that

{x, y} = {
∑

m∈Y 2m,
∑

m∈Y ∪{n}2
m}.

An X-cube is then a structure isomorphic to the default presentation that we have
just defined. Note that every default presentation of an X-cube is uniformly Σ0

1 in
X.

For example, a {0, 1, 3}-cube is an isomorphic copy of {0, 1, 2, 3, 8, 9, 10, 11}
together with the relations F0(0, 1), F0(2, 3), F0(8, 9), F0(10, 11), F1(0, 2), F1(1, 3),
F1(8, 10), F1(9, 11), F3(0, 8), F3(1, 9), F3(2, 10), F3(3, 11). The other relations do
not hold between the members of the {0, 1, 3}-cube.

Alternatively, an X-cube can be defined as follows (see [30] or Example 2.2.2).

Consider A = Z|X|2 as a vector space over Z2 with a basis {ai}i<|X|. Let f : X → |X|
be a bijection. If for every n ∈ X and every x, y ∈ A, we define Fn(x, y) ⇔
x+ af(n) = y, then A will be an X-cube.

Definition 3.4.1. Let the set A and the sequence B0, B1, . . . be as in Defini-
tion 3.1.1. Let C0 be the disjoint union of all those Bx-cubes with x /∈ A. Further-
more, let Cn be the disjoint union of C0 and nmanyA-cubes for n ∈ {1, 2, 3, . . . , ω}.

Note that Cω is isomorphic to the disjoint union over all Bx-cubes for x ∈ ω.

Proposition 3.4.2. The structures C0, C1, C2, . . . , Cω have all the same theory T ,
which is ℵ1-categorical. C0 is its prime model, and Cω is its countable saturated
model. The models C0, C1, C2, . . . , Cω are the only countable models of T up to
isomorphism.

Here is a sketch of a proof. Let us consider the theory T = Th(Cω). We need
formulate the list U of its axioms. One group of the axioms should say that the
models of T consist of cubes. Furthermore, for every x ∈ A, we need an axiom
saying that Fx is adjacent to all but nx nodes, where nx is the number of nodes
in Cω that are not adjacent to Fx. Similarly, for every x /∈ A, we need an axiom
saying that Fx is adjacent only to nx many nodes, where nx is the number of nodes
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in Cω that are adjacent to Fx. Now one can show that C0, C1, C2, . . . , Cω are all
the countable models of U and all models of U of the same uncountable cardinality
are isomorphic. This implies that the theory determined by U is complete and U is
indeed the set of axioms for T . More details can be found in the proof of Theorem
2.3.1 in Chapter 2.

Theorem 3.4.3. The models C1, C2, . . . , Cω have computable presentations, but
C0 does not have a computable presentation.

Proof. This is clear for Cω as there is a computable one-to-one enumeration (a0, b0),
(a1, b1), . . . of pairs such that for each x, the set {a : ∃s [as = a ∧ bs = x]} is the
domain of the default presentation of the Bx-cube from above. Then one defines
that Fn(s, t) holds iff bs = bt and Fn(as, at) in the default presentation of the Bbs-
cube. It is easy to see that the resulting model is computable and isomorphic to
Cω.

We now describe how to construct a computable presentation for C1. Fix some
x0 ∈ A and start the construction by enumerating all Bx-cubes in some effective
way. Also start enumerating the set A. When at some stage s a number x is
enumerated into As, we expand the finite part of the Bx0-cube constructed so far
and merge it with the finite part of the Bx-cube. To do this, we might need to
use new edges Ft with t ∈ A such that up to the stage s it has not been decided
for any two nodes a, b whether Ft(a, b) holds or not. So, we keep on enumerating
A until we have enough of such edges. To build a computable presentation for Cn
with 2 6 n < ω, one need to add n − 1 computable copies of the A-cube to the
computable presentation of C1.

Now assume for the contradiction that the prime model C0 also has a com-
putable presentation. Then there is a computable function mapping every n to a
triple (a(n), b(n), y(n)) such that 2n < y(n) ∧ Fy(n)(a(n), b(n)). This function is
total as there are infinitely many x > 2n such that x /∈ A and a copy of Bx-cube
is merged into C0. Let x(n) denote the index of the Bx(n)-cube to which a(n)
belongs. Note that Bx(n) is finite as C0 is the prime model. Note that x(n) /∈ A,
x(n) > y(n), and C(x(n)) > log(x(n)). Now x(n) can be computed from n and
log(x(n)) as x(n) is the only number z larger than log(x(n)) for which there is d
with Fz(a(n), d). So, x(n) can be found by an exhausting search once log(x(n))
and n are given. As n 6 log(x(n)), we have that

C(x(n)) 6 C(log(x(n)), n) + c 6 2 log log(x(n)) + c′

for all n and some constants c, c′. Combining these two conditions, one has that

log(x(n)) 6 2 log log(x(n)) + c′ for all n.

But this is impossible since x(n) > 2n for all n. Therefore, C0 cannot have a
computable presentation.
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Chapter 4
Prime models of finite computable
dimension

In this chapter we construct an example of a prime model of computable dimen-
sion two. We also give examples of such models in some typical classes of algebraic
structures. The background for this chapter and necessary preliminaries are pro-
vided in the General Introduction. The outline of the chapter is as follows.

In Section 4.1 we describe the construction of a directed graph of computable
dimension two which is the prime model of its own theory. Then in Section 4.2,
using the methods from Hirschfeldt/Khoussainov/Shore/Slinko [32], we will encode
this graph into an undirected graph, a partial order, a lattice, and an integral
domain. It follows from [32] that all these codings preserve computable dimensions.
We show that these codings also preserve the property of being the prime model,
except for the case of the integral domain, where we need to add finitely many
constants to the language of the structure. In some cases we provide an explicit
proof that a given structure has computable dimension two rather then referring
the reader to [32].

4.1 The Main Construction

The main result of this chapter is the following theorem.

Theorem 4.1.1. There exists a computable structure G of computable dimension
two which is the prime model of its own theory.

The structureG will be a directed graph. The proof is based on coding the u.c.e.
family F constructed by Goncharov [21] into a computable graph of dimension
two in such a way that every element of G can be defined by a first-order formula
without parameters. This implies that G is the prime model of its theory. We now
restate the result of S. Goncharov in more detail.

Definition 4.1.2. Let F be a u.c.e. family of sets. A computable enumeration
µ : ω → F is a mapping from ω onto F such that the set {(n, k) : n ∈ µ(k)} is c.e.
We will also use the notation {Ai}i∈ω for an enumeration µ, where Ai = µ(i).

An enumeration µ is reducible to ν, denoted µ 6 ν, if there is a computable
function f such that µ(i) = ν(f(i)) for every i ∈ ω. Two enumerations µ and ν
are equivalent, denoted µ ≡ ν, if µ 6 ν and ν 6 µ.

Theorem 4.1.3 (Goncharov [21]). There exists a u.c.e. family F that has ex-
actly two nonequivalent one-to-one computable enumerations. Moreover, F has
the following properties:
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(i) If S ∈ F is a finite set, then S contains an element n(S), called a marker
for a finite set S, that does not belong to any other set from F .

(ii) If S ∈ F is an infinite set, then S contains an element n(S), called a marker
for an infinite set S, that does not belong to any other infinite set from F .

Remark 4.1.4. We may assume that the family F contains infinitely many one-
element sets. Indeed, we can always take F ′ = {2S : S ∈ F} ∪ {{2k + 1} : k ∈ ω}
instead of F . The family F ′ has exactly two nonequivalent one-to-one computable
enumerations. This follows from the fact that the index set of the subfamily
{{2k + 1} : k ∈ ω} is computable in any one-to-one computable enumeration of
F ′.

Let {A0
n}n∈ω and {A1

n}n∈ω be two nonequivalent one-to-one computable enu-
merations of F . For each i = 0, 1, fix a computable enumeration of {Ain}n∈ω such
that at every step s, exactly one element enters one of the Ain’s.

We build two computable presentations G0 and G1 of the directed graph G
using a step-by-step construction. Let Gs

i be the finite part of Gi constructed by
the end of step s. When we add a new element to Gs

i , we always choose the least
element that has not been used so far. At every step s, we will have that Gs

i ⊆ Gs+1
i

and Gi =
⋃
s∈ω

Gs
i . We will use the following notations in our construction.

Definition 4.1.5. Let n ∈ ω; the directed graph [n] has n + 3 many nodes
x0, x1, . . . , xn+2 with an edge from x0 to itself, an edge from xn+2 to x1, and
an edge from xi to xi+1 for i 6 n+ 1. We call x0 the top of [n].

Let S ⊆ ω; the directed graph [S] consists of one copy of [s] for every s ∈ S,
with all tops identified.

Definition 4.1.6. Two tops n0 and n1 of Gs
i are connected if there is an element

l ∈ Gs
i such that (n0, l), (l, n0), (n1, l), (l, n1) are edges in Gs

i . In this case l is
called the linking element.

“To connect two tops n0, n1 of Gs
i using a linking element” means to add one

new element l as well as the edges (n0, l), (l, n0), (n1, l), (l, n1) to the graph Gs
i .

A component is a maximal subgraph isomorphic to [S] for some S ⊆ ω. Note
that this is not necessarily the same as a maximal connected component.

As an example, Figure 4.1 below shows the structure [S] for S = {1, 3}, and
Figure 4.2 shows two tops n0 and n1 connected via a linking element l.

x1 x2 x3 x4 x5

x′1 x′2 x′3

x0=x
′
0top

Figure 4.1: The structure [{1, 3}].

n0 n1

ltop top
linking element

Figure 4.2: A linking element.
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The construction of G0 and G1 is now as follows.

Step 0. Let G0
0 = G0

1 = {2n : n ∈ ω} and, for every n ∈ ω, connect 2n to itself in
both G0

0 and G0
1. Thus 2n is a top in G0 and G1.

Step s + 1 . For i ∈ {0, 1}, do the following. Let k be the unique element that
enters some Ain at step s. Consider the component of Gs

i isomorphic to [Ain,s] and
containing the top 2n. Expand this component to one isomorphic to [Ain,s∪{k}] =
[Ain,s+1]. If k is not the first element that enters Ain, then find the least m such
that 2n is not connected to 2m in Gs

i and connect 2n to 2m using one new linking
element.

Now, for every pair u0, v0 of tops in Gs
0 and every pair u1, v1 of tops in Gs

1

such that u0, u1 belong to the components isomorphic to [S0] and v0, v1 belong to
the ones isomorphic to [S1] for some non-empty sets S0 and S1, do the following.
Check if u0, v0 are connected in Gs

0, but u1, v1 are not connected in Gs
1, or vice

versa. If yes, connect those tops ui, vi using one linking element which are not
connected in Gs

i .
End of the construction.

Lemma 4.1.7. G0 and G1 are isomorphic.

Proof. According to the construction, each top 2n in G0 (resp. G1) belongs to the
component isomorphic to [A0

n] (resp. [A1
n]). Since {A0

n}n∈ω and {A1
n}n∈ω are one-

to-one enumerations of the same family, G0 and G1 consist of the same collection
of components.

To finish the proof, we need to show that for every pair n0, n1 of tops in G0

and every pair m0, m1 of tops in G1, if for i ∈ {0, 1}, ni and mi belong to the
isomorphic components, then n0, n1 are connected in G0 iff m0, m1 are connected
in G1. Suppose that n0, n1, m0, m1 is a counterexample to the above statement
such that, for instance, n0, n1 are connected in G0 and m0, m1 are not connected
in G1.

Let ni, mi be the tops of the components isomorphic to [Si], where i ∈ {0, 1}.
By the construction, if n is the top of an infinite component of Gi, then n is
connected to all other tops in Gi. Therefore, [S0] and [S1] are finite. Hence there is
a step s0 such that both Gs0

0 and Gs0
1 contain the components isomorphic to [S0],

[S1] with tops n0, n1 and m0, m1 respectively, and n0, n1 are connected in Gs0
0 .

Now, if m0 and m1 have not yet been connected, then they will be connected at
the next step. This contradiction proves the lemma.

Lemma 4.1.8. G0 and G1 are not computably isomorphic.

Proof. Let f : G0 → G1 be a computable isomorphism. Note that f maps tops
to tops, and the component containing the top 2n in G0 is isomorphic to the one
containing the top f(2n) in G1. Therefore, the enumerations {A0

n}n∈ω and {A1
n}n∈ω
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are reducible to one another via the computable functions h0(n) = f(2n)/2 and
h1(n) = f−1(2n)/2, which contradicts our choice of {A0

n}n∈ω and {A1
n}n∈ω.

Lemma 4.1.9. Let H be a computable graph isomorphic to G, then H is com-
putably isomorphic either to G0 or to G1. Thus G has computable dimension two.

Proof. Since H is computable, there is a computable list t0 < t1 < t2 < . . . of the
tops in H, where < is the natural order on ω. The structure H gives rise to a
one-to-one computable enumeration {An}n∈ω of F such that k ∈ An iff there is a
subgraph of H isomorphic to [k] containing tn as its top.

Since F has exactly two nonequivalent one-to-one computable enumerations,
{An}n∈ω is equivalent either to {A0

n}n∈ω or {A1
n}n∈ω. Suppose that {An}n∈ω is

equivalent to {A0
n}n∈ω. We now construct a computable isomorphism h from H to

G0.
By our assumption, there is a computable function f such that An = A0

f(n)

for all n. Note that f is a permutation of ω because {An}n∈ω and {A0
n}n∈ω are

one-to-one. Take any k ∈ H; the value of h(k) is defined according to the following
three cases:

1) If k = tn for some n, then h(k) = 2f(n).

2) If k is the linking element between tn and tm, then h(k) is the linking element
between 2f(n) and 2f(m) in G0. Note that such a linking element exists since
H ∼= G0.

3) If k is neither a top nor a linking element, then there are m and tn such that k
belongs to the subgraph of H isomorphic to [m] with the top tn. Let l be the
length of the unique path from tn to k without repetitions. Now, h(k) is the
unique element of G0 belonging to the subgraph isomorphic to [m] with the top
2f(n) such that the length of the path from 2f(n) to h(k) without repetitions
is equal to l.

By the construction, h : H → G0 is an isomorphism. It is computable since,
for a given k ∈ H, one can effectively find out which one of the cases 1), 2) or 3)
holds and then effectively find the value of h(k).

To show that G is prime we will use the following model-theoretic fact.

Proposition 4.1.10. Let A be a model such that for every a ∈ A, there is a
formula ϕa(x) in the language of A with the property that

A � ∀z (ϕa(z)↔ a = z).

Then A is the prime model of its theory.
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Lemma 4.1.11. G is prime.

Proof. Due to Proposition 4.1.10, to prove that G is prime it suffices to show that
for every a ∈ G, there is a formula ϕa(x) in the language of directed graphs such
that G � ∀x (ϕa(x)↔ a = x). Let E(x, y) be the edge relation on G.

By the construction, the top of every infinite component is connected to all
other tops. On the other hand, the top of every finite component is not connected
to all other tops. To see this, let 2n0 be the top of a finite component [A0

n0
] in G0,

and let n1 be such that A0
n0

= A1
n1

. Hence, 2n1 is the top of a finite component
isomorphic to [A0

n0
] in G1. Consider the step s0 by which we have constructed the

components [A0
n0

] and [A1
n1

] in Gs0
0 and Gs0

1 respectively. Since F contains infinitely
many singletons, there are k0 and k1, such that 2k0 and 2n0 are not connected in
Gs0

0 , 2k1 and 2n1 are not connected in Gs0
1 , and A0

k0
, A1

k1
are equal one-element

sets. Then 2k0, 2n0 are not connected in G0 as well as 2k1, 2n1 are not connected
in G1 because we do not connect 2k0 with any top when the only element of A0

k0

is enumerated in it, and the same is true for 2k1 in G1.
First, let us define ϕa(x) when a is a top. If a is the top of a finite compo-

nent [S], then ϕa(x) states that E(x, x) and x belongs to a subgraph isomorphic
to [n(S)], where n(S) is the marker for the finite set S ∈ F . If a is the top
of an infinite component [S], then ϕa(x) states that E(x, x) & ∀y (E(y, y) →
“x and y are connected via a linking element”), and x belongs to a subgraph iso-
morphic to [n(S)], where n(S) is the marker for the infinite set S ∈ F .

If a is a linking element between two tops u and v, then

ϕa(x) = ∃y ∃z (E(x, y) ∧ E(y, x) ∧ E(x, z) ∧ E(z, x) ∧ ϕu(y) ∧ ϕv(z)).

If a is neither a top nor a linking element, then let k, l and u be such that a
belongs to the subgraph of G isomorphic to [k] with the top u, and l is the length
of the unique path from u to a without repetitions. In this case ϕa(x) states that

∃z (ϕu(z) & “x belongs to a subgraph isomorphic to [k] with top z” &

“there is a path of length l without repetitions from z to x”).

Theorem 4.1.1 now follows from Lemmas 4.1.7, 4.1.8, 4.1.9, and 4.1.11.

4.2 Codings into another structures

Hirschfeldt, Khoussainov, Shore, and Slinko [32] developed the technique for coding
directed graphs into structures like symmetric, irreflexive graphs, partial orders,
lattices, rings, 2-step nilpotent groups, and so on. These codings are effective in
the sense that they preserve various interesting computability-theoretic properties
of the structures such as the computable dimension, the degree spectra of the
structures, and the spectra of relations on computable structures.
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Our goal in this section is to show that in some cases these codings also preserve
the model-theoretic property of being the prime model. For instance, let G be a
graph such that every element of it is defined by a first order formula. We will
show that the codings of G into a partial order, a lattice, and an integral domain
preserve this property. Hence these structures will be the prime models of their
theories. However, in the case of integral domains we will need to add finitely
many constants.

Let G be the directed graph constructed in the previous section. First, we
show how to encode G into a prime symmetric, irreflexive graph HG of computable
dimension two. We then encode HG into a prime partial order, a lattice, and an
almost prime integral domain preserving its computable dimension.

4.2.1 Symmetric, irreflexive graphs

Let G be an infinite, computable graph, and E be its edge relation. Without loss
of generality we will assume that |G| = ω. A computably presentable symmetric,
irreflexive graph HG = (|HG|, F ) is defined as follows.

1. |HG| = {a, a′, b, b′, b′′} ∪ {ci, di, ei : i ∈ ω}.
2. F (x, y) holds only in the following cases.

(a) F (a, a′), F (a′, a), F (b, b′), F (b′, b), F (b′, b′′), F (b′′, b′).

(b) For all i ∈ ω,

F (a, ci) and F (ci, a), F (di, ei) and F (ei, di),

F (ci, di) and F (di, ci), F (b, ei) and F (ei, b).

(c) If E(i, j) then F (ci, ej) and F (ej, ci).

a a′

b b′ b′′

c0 c1 c2

d0 d1 d2

e0 e1 e2

Figure 4.3: A portion of HG.

Figure 4.3 shows a portion of the graph HG in the case in which E(0, 1), E(1, 0),
E(1, 2), E(2, 2), ¬E(0, 0), ¬E(0, 2), ¬E(1, 1), ¬E(2, 0), and ¬E(2, 1).
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Define
D(x) = {x ∈ |HG| : x 6= a′ ∧ F (a, x)} = {ci : i ∈ ω}

and

R(x, y) = {(x, y) : D(x) ∧D(y) ∧ ∃d, e(F (b, e) ∧ F (e, d) ∧ F (d, y) ∧ F (x, e))}.

Then the mapping g : i → ci is an isomorphism from G onto the graph with the
domain DHG and the edge relation RHG(x, y).

Proposition 4.2.1. For any computable presentation of HG, the sets DHG =
{cHG
i : i ∈ ω}, {dHG

i : i ∈ ω}, {eHG
i : i ∈ ω}, and the relation RHG are computable.

Proof. Clearly, DHG = {cHG
i : i ∈ ω}, {dHG

i : i ∈ ω}, and {eHG
i : i ∈ ω} are

computable since they are definable by quantifier-free formulas with parameters.
Hence, RHG is also computable since for all x, y ∈ DHG ,

∃d, e[F (b, e) ∧ F (e, d) ∧ F (d, y) ∧ F (x, e)]

⇐⇒ ∀d, e[(F (b, e) ∧ F (e, d) ∧ F (d, y))→ F (x, e)].

Proposition 4.2.2. The relations D and R are definable by first-order formulas
in the language of graphs.

Proof. It suffices to show that the constants a, a′, b, b′, and b′′ are definable. Let

ψb′′(x) = ∃! yF (x, y) ∧ ∀y[F (x, y)→ ∃! z(z 6= x ∧ F (z, y))],

then ψb′′ defines b′′. The following formulas define b′, b, a′, and a respectively:

ψb′(x) = ∃y(F (x, y) ∧ ψb′′(y)), ψb(x) = ∃y(F (x, y) ∧ ψb′(y)) ∧ ¬ψb′′(x),

ψa′(x) = ∃! yF (x, y) ∧ ¬ψb′′(x), ψa(x) = ∃y(F (x, y) ∧ ψa′(y)).

Let G be the prime graph of computable dimension two constructed in Section
4.1, and let G1, G2 be its two computable presentations which are not computably
isomorphic. For each j = 1, 2, let us choose a computable presentation HGj

of HG

such that the isomorphic embedding gj : i→ c
HGj

i is computable.

Proposition 4.2.3. HG has computable dimension two.

Proof. If f : HG1 → HG2 is a computable isomorphism, then so is f̂ = g−1
2 ◦f ◦ g1 :

G1 → G2. Indeed, EG1(i, j) ⇔ RHG1 (g1(i), g1(j)) ⇔ RHG2 (f ◦ g1(i), f ◦ g1(j)) ⇔
EG2(g−1

2 ◦f ◦g1(i), g−1
2 ◦f ◦g1(j)). So, HG1 and HG2 are not computably isomorphic.

Let HG′ be any computable presentation of HG, and let G′ be a computable
graph with the domain DHG′ and the edge relation RHG′ . Since HG′

∼= HG and
D and R are definable relations, we have G′ ∼= G. Hence for some j = 1, 2, there
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is a computable isomorphism h : G′ → Gj. Now we can construct a computable
isomorphism ϕ from HG′ to HGj

.

Let ϕ(aHG′ ) = aHGj , ϕ(a′HG′ ) = a′HGj , ϕ(bHG′ ) = bHGj , ϕ(b′HG′ ) = b′HGj ,
ϕ(b′′HG′ ) = b′′HGj . For every other x ∈ |HG′|, ϕ(x) is defined as follows.

(1) If x ∈ DHG′ , that is x = c
HG′
i for some i ∈ ω, let ϕ(x) = gj(h(x)) = c

HGj

h(x) .

(2) If x = d
HG′
i for some i ∈ ω, let ϕ(x) = d

HGj

h(y) , where y = c
HG′
i is an element of

DHG′ which is connected to x. In other words, ϕ(x) is an element of {d
HGj

i :

i ∈ ω} that is connected to gj(h(y)) = c
HGj

h(y) .

(3) If x = e
HG′
i for some i ∈ ω, let ϕ(x) = e

HGj

h(y) , where y = c
HG′
i .

It is easy to check that this construction for ϕ : HG′ → HGj
is effective. Therefore,

HG has dimension two.

Proposition 4.2.4. HG is prime.

Proof. It suffices to show that every element x ∈ |HG| is definable by a first order
formula. The formulas that define the constants a, a′, b, b′, and b′′ are given in
the proof of Proposition 4.2.2. Consider ci; we know that there exists a formula
ϕi(x) that defines the element i ∈ |G|. Let ψci(x) be the formula obtained from
ϕi(x) by replacing every occurrence of the binary predicate E with the formula for
R, every occurrence of ∀z . . . with ∀z(D(z)→ . . .), and every occurrence of ∃z . . .
with ∃z(D(z)∧ . . .), where z is any variable. Then ψci(x) defines ci. Furthermore,
di is defined by

ψdi
(x) = ¬ψa(x) ∧ ∃y(F (x, y) ∧ ψci(y)) ∧ ¬∃y(F (x, y) ∧ ψb(y)),

and ei is defined by ψei
(x) = ∃y(F (x, y) ∧ ψdi

(y)) ∧ ¬ψci(x). Therefore, HG is
prime.

4.2.2 Partial orderings

Let G be an infinite, computable, symmetric, irreflexive graph, and E be its edge
relation. Again we assume that |G| = ω. A computably presentable partial order-
ing PG = (|PG|,4) is defined as follows.

1. |PG| = {a, b} ∪ {ci : i ∈ ω} ∪ {di,j : i < j ∈ ω}.
2. The relation 4 is the smallest partial ordering on |PG| satisfying the following

conditions.
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(a) a 4 ci 4 b for all i ∈ ω.

(b) If i < j and E(i, j), then di,j 4 ci, cj.

(c) If i < j and ¬E(i, j), then ci, cj 4 di,j.

a

b

c0 c1 c2

d0,1

d0,2

d1,2

Figure 4.4: A portion of PG.

Figure 4.4 shows a portion of the partial ordering PG in the case in which
E(0, 1), E(1, 2), and ¬E(0, 2).

Define
D(x) = {x ∈ |PG| : a ≺ x ≺ b} = {ci : i ∈ ω}

and
R(x, y) = {(x, y) : x 6= y ∧D(x) ∧D(y) ∧ ∃z 6= a (z 4 x, y)}.

Note that g : i → ci is an isomorphism from G onto the graph with the domain
DPG and the edge relation RPG(x, y).

Proposition 4.2.5. For any computable presentation of PG, the relations DPG

and RPG are computable.

Proof. Obviously, DPG is computable, and so is RPG since for all x 6= y ∈ DPG ,

∃z 6= a (z 4 x, y)⇐⇒ ¬∃z 6= b (x, y 4 z).

Proposition 4.2.6. The relations D and R are definable by first-order formulas
in the language of partial orders.

Proof. It suffices to show that the constants a and b are definable. Let ψa(x) =
∀y (∃z (z ≺ y) → x 4 y) and ψb(x) = ∀y (∃z (y ≺ z) → y 4 x). It is not hard to
see that ψa(x) and ψb(x) define a and b, respectively.

Let G be the prime, symmetric, irreflexive graph of computable dimension two
constructed in Section 4.2.1, and let G1, G2 be its two computable presentations
which are not computably isomorphic. For each j = 1, 2, let us choose a com-

putable presentation of PGj
such that the mapping gj : i→ c

PGj

i is computable.
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Proposition 4.2.7. PG has computable dimension two.

Proof. If f : PG1 → PG2 is a computable isomorphism, then so is f̂ = g−1
2 ◦ f ◦ g1 :

G1 → G2. Therefore, PG1 and PG2 are not computably isomorphic.
Let PG′ be any computable presentation of PG, and let G′ be a computable

graph with the domain DPG′ and the edge relation RPG′ . Since PG′ ∼= PG and D
and R are definable relations, we have G′ ∼= G. Hence for some j = 1, 2, there is a
computable isomorphism h : G′ → Gj. A computable isomorphism ϕ from PG′ to
PGj

is now defined as follows.

Let ϕ(aPG′ ) = aPGj and ϕ(bPG′ ) = bPGj . For every x ∈ DPG′ , that is if x = c
PG′
i

for some i ∈ ω, let ϕ(x) = gj(h(x)) = c
PGj

h(x). If x = d
PG′
i,j for some i < j, then either

∃ y1, y2 ∈ DPG′ (y1 6= y2 ∧ x 4 y1, y2) or ∃ y1, y2 ∈ DPG′ (y1 6= y2 ∧ y1, y2 4 x). We
can effectively find out which one of the cases holds as well as the relevant y1, y2.
Suppose x 4 y1, y2; in this case let ϕ(x) be the unique element of PGj

that is less

than both gj(h(y1)) = c
PGj

h(y1) and gj(h(y2)) = c
PGj

h(y2) and that is not equal to aPGj .
It is easy to see that this construction for ϕ : PG′ → PGj

is effective. Therefore,
PG has computable dimension two.

Proposition 4.2.8. PG is prime.

Proof. Let us show that every element of PG is definable by a first order formula.
The formulas that define the constants a and b are given in the proof of Proposition
4.2.6. Recall that every i ∈ |G| is defined by some formula ϕi(x). Now, every ci is
defined by the formula ψci(x) obtained from ϕi(x) by replacing every occurrence
of the binary predicate E with the formula for R, every occurrence of ∀z . . . with
∀z(D(z)→ . . .), and every occurrence of ∃z . . . with ∃z(D(z)∧ . . .), where z is any
variable. If E(i, j), then di,j is defined by

ψdi,j
(x) = ¬ψa(x) ∧ ∃ y1, y2(ψci(y1) ∧ ψcj (y2) ∧ x 4 y1, y2).

If ¬E(i, j), then di,j is defined by

ψdi,j
(x) = ¬ψb(x) ∧ ∃ y1, y2(ψci(y1) ∧ ψcj (y2) ∧ y1, y2 4 x).

Therefore, PG is prime.

4.2.3 Lattices

Let G be an infinite, computable, symmetric, irreflexive graph with edge relation
E and |G| = ω. A computably presentable lattice LG = (|LG|,f,g) is defined as
follows.

1. |LG| = {a, b, k} ∪ {ci,mi : i ∈ ω} ∪ {di,j : i < j ∧ E(i, j)}.
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2. For all x, y ∈ |LG|, if x 6= y, then x g y = a and x f y = b, except as required
to satisfy the following conditions.

(a) If i < j and E(i, j), then ci g cj = di,j.

(b) k g ci = mi for all i ∈ ω.

(c) xg b = x and xf a = x for all x ∈ |LG|.

c0 c1 c2 k

d0,1 d1,2 m0 m1 m2

Figure 4.5: A portion of LG.

Figure 4.5 shows a portion of the lattice LG in the case in which E(0, 1), E(1, 2),
and ¬E(0, 2). For simplicity, the top element a and the bottom element b of the
lattice are not shown in the picture.

Define

D(x) = {x ∈ |LG| : (k g x 6= a) ∧ (k g x 6= x) ∧ x 6= b} = {ci : i ∈ ω}

and
R(x, y) = {(x, y) : x 6= y ∧D(x) ∧D(y) ∧ (xg y 6= a)}.

Note that g : i → ci is an isomorphism from G onto the graph with the domain
DLG and the edge relation RLG(x, y). The following proposition is obvious.

Proposition 4.2.9. For any computable presentation of LG, the relations DLG

and RLG are computable.

Let G be the prime, symmetric, irreflexive graph of computable dimension two
constructed in Section 4.2.1. If we add one isolated vertex to G, then the new
graph will have the same computable dimension as G, and every element will be
definable by a first order formula. This is because G does not have isolated vertices.
So, in this section we assume that G has one isolated vertex. Now, let G1, G2 be
two computable presentations of G that are not computably isomorphic. For each
j = 1, 2, let us choose a computable presentation of LGj

such that the mapping

gj : i→ c
LGj

i is computable.

Proposition 4.2.10. The relations D and R are definable by first-order formulas
in the language of lattices.

Proof. It suffices to show that the constants a, b, and k are definable. The formulas
ψa(x) = ∀y(x g y = x) and ψb(x) = ∀y(x f y = x) define a and b, respectively.
Since G has an isolated vertex, k is the only level-2 element of LG whose join with
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any level-2 element is not a. The level-2 elements of LG are {k, ci : i ∈ ω}. This
can be expressed by the formula

ψk(x) = ∃z (ψa(z) ∧ lev2(x) ∧ ∀y (lev2(y)→ xg y 6= z)),

where lev2(x) = ∃!y (x 6= y ∧ xf y = y).

Proposition 4.2.11. LG has computable dimension two.

Proof. If f : LG1 → LG2 is a computable isomorphism, then so is f̂ = g−1
2 ◦ f ◦ g1 :

G1 → G2. Therefore, LG1 and LG2 are not computably isomorphic.
Let LG′ be any computable presentation of LG, and let G′ be a computable

graph with the domain DLG′ and the edge relation RLG′ . Since LG′ ∼= LG and D
and R are definable relations, we have G′ ∼= G. Hence for some j = 1, 2, there is a
computable isomorphism h : G′ → Gj. A computable isomorphism ϕ from LG′ to
LGj

is defined as follows.

Let ϕ(aLG′ ) = aLGj , ϕ(bLG′ ) = bLGj , and ϕ(kLG′ ) = kLGj . For every other
x ∈ |LG′ |, ϕ(x) is defined as follows.

(1) If x ∈ DLG′ , that is x = c
LG′
i for some i ∈ ω, let ϕ(x) = gj(h(x)) = c

LGj

h(x).

(2) If x /∈ DLG′ and x g kLG′ 6= aLG′ , that is x = m
LG′
i for some i ∈ ω, then there

is z ∈ DLG′ such that z g kLG′ = x. In this case let ϕ(x) = kLGj g ϕ(z).

(3) If x /∈ DLG′ and x g kLG′ = aLG′ , that is x = d
LG′
i,j for some i < j, then there

are z1, z2 ∈ DLG′ such that z1 g z2 = x. In this case let ϕ(x) = ϕ(z1)g ϕ(z2).

It is easy to see that this construction for ϕ : LG′ → LGj
is effective. Hence LG

has dimension two.

Proposition 4.2.12. LG is prime.

Proof. We show that every element of LG is definable by a first order formula. The
formulas that define the constants a, b, and k are given in the proof of Proposition
4.2.10. Let i ∈ |G| be defined by a formula ϕi(x), then ci is defined by the formula
ψci(x) obtained from ϕi(x) by replacing every occurrence of the binary predicate
E with the formula for R, every occurrence of ∀z . . . with ∀z(D(z) → . . .), and
every occurrence of ∃z . . . with ∃z(D(z) ∧ . . .), where z is any variable. Each di,j
is defined by

ψdi,j
(x) = ∃ z1, z2((x = z1 g z2) ∧ ψci(z1) ∧ ψcj (z2)).

Each mi is defined by

ψmi
(x) = ∃ z1, z2((x = z1 g z2) ∧ ψci(z1) ∧ ψk(z2)).

Therefore, LG is prime.
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4.2.4 Integral domains

Definition 4.2.13. We say that a model A is almost prime if there is a finite
tuple ā = a1, . . . , ak of elements of A such that the enriched structure (A, ā) is the
prime model of its own theory.

Let G be a computable symmetric, irreflexive graph with the edge relation E
and |G| = ω. Fix a number p which is either 0 or prime. We will use the convention
that Z0 = Z. Let I be the set of invertible elements of Zp, which is obviously finite.

The computably presentable integral domain AG is defined to be

Zp[xi : i ∈ ω]
[ y

xixj
: E(i, j)

][ z

xixj
: ¬E(i, j)

][ y
xni

: i, n ∈ ω
]
.

From [32] it follows that AG has the same computable dimension as G if G has
the following property: for every finite set of nodes S, there exist nodes x, y /∈ S
that are connected by an edge. Note that the graph constructed in Section 4.2.1
satisfies this property. Therefore, for this G, AG has computable dimension two.

We prove that AG is almost prime. This will require the following model-
theoretic fact, which is a strengthening of Proposition 4.1.10.

Proposition 4.2.14. Let A be a model in a countable language. Suppose that for
every a ∈ A, there is a formula ϕa(x) in the language of A such that A � ϕa(a)
and ϕa(A) = {b ∈ A : A � ϕa(b)} is finite. Then A is the prime model of its
theory.

Define
D(x) = {x ∈ |AG| : x /∈ I ∧ ∃r(x2r = z)},

Q(x, x′) = {(x, x′) : D(x) ∧ ∃a ∈ I(x′ = ax)},
and

R(x, x′) = {(x, x′) : D(x) ∧D(x′) ∧ ¬Q(x, x′) ∧ ∃r(rxx′ = y)}.
Let ϕi(x) be a formula that defines i ∈ |G|, and let ψi(x) be the formula obtained
from ϕi(x) by replacing every occurrence of the binary predicate E with the for-
mula for R, every occurrence of the equality relation with the formula for Q, and
every occurrence of ∀z . . . and ∃z . . . with ∀z(D(z) → . . .) and ∃z(D(z) ∧ . . .),
respectively, where z is any variable.

From Lemmas 5.1, 5.2 and Corollary 5.5 of [32] it follows that I can be defined
as the set of invertible elements of AG, DAG = {axi : i ∈ ω ∧ a ∈ I}, and
RAG = {(axi, bxj) : EG(i, j) ∧ a, b ∈ I}. This means that QAG is a congruence
relation on (DAG , RAG), and the quotient structure of (DAG , RAG) modulo QAG is
isomorphic to (G,E). Therefore, ψi(AG) = {axi : a ∈ I}. Note that ψi(AG) is
finite since so is I.

Let

Gen ={±1} ∪ {xi : i ∈ ω} ∪
{ y

xixj
: E(i, j)

}
∪
{ z

xixj
: ¬E(i, j)

}
∪{ y

xni
: i, n ∈ ω

}
.
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Every element of AG can be expressed as a sum of products of elements of Gen.
Let us add the constants for y and z to the language of rings. Now, for every
g ∈ Gen, there is a formula ψg(x) in the expanded language such that AG � ψg(g)
and ψg(AG) is finite. The formulas for xi’s are given above. For y/xixj the required
formula is ψ(x) = ∃u1∃u2 (ψi(u1) ∧ ψj(u2) ∧ u1u2x = y). It is easy to see that
ψ(AG) is finite. The other cases are similar.

Since every a ∈ AG can be expressed as a term involving elements of Gen, one
can construct a formula ψa(x) in the language expanded by new constants for y
and z such that ψa(x) holds on a in AG and ψa(AG) is finite. Therefore, due to
Proposition 4.2.14, AG is almost prime.
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Chapter 5
Π0

1-presentations of algebras

In this chapter we study the question as to which computable algebras possess
non-computable Π0

1-presentations. The background for this subject is provided in
the General Introduction.

Here is a brief outline of the chapter. In the first section, we give the basic
definitions of computable, Σ0

1-, and Π0
1-algebras, and provide some examples. In

the second section we provide a theorem that characterizes those Σ0
1-algebras that

are non-computable. As a corollary we obtain that the isomorphism types of
finitely generated computable algebras (such as arithmetic or term algebras) and
of infinite computable fields fail to have non-computable Σ0

1-presentations. In the
third section we single out a class of algebras and call the algebras from that
class term-separable. We prove that many well-known algebras such as arithmetic,
term algebras, infinite fields and vector spaces are term-separable. Finally, the
last section is devoted to showing that all computable term-separable algebras are
isomorphic to non-computable Π0

1-algebras.

5.1 Preliminaries

We now turn to the basic notions of this chapter. For the basics of computability
theory the reader is referred to Soare [71]. An algebra is a structure of a finite
purely functional language (signature) σ. Thus, any algebra A is of the form
(A; fA0 , . . . , f

A
r ), where A is a nonempty set called the domain of the algebra, and

each fAi is a total operation on the domain A that interprets the function symbol
fi ∈ σ. When there is no confusion the operation named by fi is denoted by the
same symbol fi. We refer to the symbols f0, . . . , fr as the signature of the algebra.
Often we call the operations f0, . . . , fr basic operations or functions (of the algebra
A). Presburger arithmetic (ω; 0, S,+) is an algebra, so are groups, rings, lattices,
and Boolean algebras. Fundamental structures which arise in computer science
such as lists, stacks, queues, trees, and vectors can all be viewed and studied as
algebras.

We now define the notion of a term of an algebra A over a variable set X =
{x0, x1, . . .}.

Definition 5.1.1. Let A = (A; f0, . . . , fr) be an algebra. We define the terms
of this algebra as formal expressions over a variable set X and the domain A as
follows. Every element a ∈ A and variable x ∈ X is a term. If t1, . . . , tn are terms
and f ∈ σ is a function symbol of arity n, then f(t1, . . . , tn) is also a term.

As the terms are formal expressions formed from the set A ∪ X using the
signature σ, it makes sense to talk about syntactic equality between terms of the
algebra A. For instance, examples of terms of arithmetic (ω, S,+,×) are 5, (x +
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(7× y)) + S(6), 2 + 7 and 7 + 2. Note that syntactically the terms 2 + 7 and 7 + 2
are distinct. The elements ā appearing in a term t of the algebra A are called
parameters of t. We write t(x̄, ā) to mean that the variables of the term t are
among x̄ and the parameters are among ā.

Consider the set of all terms without parameters. It can be transformed into
an algebra in a natural way by declaring the value of f on any tuple (t1, . . . , tn) to
be the term f(t1, . . . , tn). This is called the term algebra with generator set X.

Let A = (A, f0, . . . , fn) be an algebra with a computable universe. For each
term t = t(ā) of A without free variables, introduce a new constant ct that names
the element t(ā). Expand the signature σ by adding to it all these constant symbols.
So, elements a ∈ A may have several constants c naming it. Denote the expanded
signature by σA. Thus, we have an expansion of A by the constants ct.

Definition 5.1.2. Consider the expanded algebra A in the signature σA.

1. The atomic diagram of A, denoted by D(A), is the set of all expressions of the
type fi(ca1 , . . . , can) = fj(cb1 , . . . , cbk), fi(ca1 , . . . , can) = cb, ca = cb and their
negations which are true in the algebra A. The algebra A = (A; f0, . . . , fn)
is computable if its atomic diagram is a computable set.

2. The positive atomic diagram of A, denoted by PD(A), is the set of all ex-
pressions of the type fi(ca1 , . . . , can) = fj(cb1 , . . . , cbk), fi(ca1 , . . . , can) = cb,
and ca = cb which are true in the algebra A. The algebra A = (A; f0, . . . , fn)
is Σ0

1-algebra if its positive atomic diagram is a computably enumerable set.

3. The negative atomic diagram of A, denoted by ND(A), is the set of all
expressions of the type fi(ca1 , . . . , can) 6= fj(cb1 , . . . , cbk), fi(ca1 , . . . , can) 6= cb,
and ca 6= cb which are true in the algebra A. The algebra A = (A; f0, . . . ,
fn) is Π0

1-algebra if its negative atomic diagram is a computably enumerable
set.

It is easy to see that the algebra is computable if and only if it is both Σ0
1- and

Π0
1-algebra. We give now several examples.

Example 5.1.3. Let A = (A; f0, . . . , fr) be an infinite computable algebra. Then
it is isomorphic to an algebra (ω, h1, . . . , hr), where each hi is a computable func-
tion. Clearly all algebras of the form (ω, g1, . . . , gr), where each gi is a computable
function, are computable.

Example 5.1.4. Typical examples of Σ0
1-algebras are:

(i) The Lindenbaum algebras of computably enumerable first-order theories,
such as Peano arithmetic.

(ii) All finitely presented groups and, in fact, all finitely presented algebras.

The following two examples provide simple ways of building Π0
1-algebras.
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Example 5.1.5. Let p1, . . . , pn be computable permutations of ω. Consider the
group G generated by these permutations. Then G is a Π0

1-algebra. Indeed, if
g and g′ are elements of this group, then their non-equality is confirmed by the
existence of an n ∈ ω at which g(n) 6= g′(n).

Example 5.1.6. Let A = (ω, f0, . . . , fr) be a computable algebra. For the terms
t(x̄) and p(x̄), we write t =A p if the values of t and p are equal for all instantiations
of the variables. Consider the algebra B obtained by factoring the term algebra
with respect to the relation =A. The algebra B is a Π0

1-algebra since non-equality
between any two terms t(x̄) and p(x̄) is confirmed by the existence of a tuple ā ∈ A
at which t(ā) 6= p(ā).

Example 5.1.7. Let Σ = {0, . . . , k − 1} be a finite alphabet and L ⊆ Σ∗ be
a computable language. Consider a computable algebra A = (Σ∗, S0, . . . , Sk−1),
where Si(x) = xi for every x. Define a congruence relation ∼L on A as follows:
x ∼L y iff ∀u (xu ∈ L⇐⇒ yu ∈ L). Then A/ ∼L is a Π0

1-algebra.

A Π0
1-algebra (or Σ0

1-algebra) A can be explained as follows. As the negative
atomic diagram (or the positive atomic diagram, respectively) of A can be com-
putably enumerated, the set E = {(ca, cb) | ca = cb is true in the algebra A},
representing the equality relation in A, is the complement of a c.e. set (or is a c.e.
set, respectively). Let f be a basic n-ary operation on A. From the definition of
a computably enumerable algebra, the operation f can be thought of as a func-
tion induced by a computable function, often also denoted by f , which respects
the E-equivalence classes in the following sense: for all x1, . . ., xn, y1, . . ., yn if
(xi, yi) ∈ E, then (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ E. Therefore, a natural way to
think about A is that the elements of A are E-equivalence classes, and the opera-
tions of A are induced by computable operations. This reasoning suggests another
equivalent approach to the definition of a Π0

1-algebra (as well as a Σ0
1-algebra)

explained in the next paragraph.
Let E be an equivalence relation on ω. A computable n-ary function f respects

E if for all natural numbers x1, . . ., xn and y1, . . ., yn such that (xi, yi) ∈ E for
i = 1, . . . , n, we have (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ E. Let ω(E) be the factor
set obtained by factorizing ω by E, and let f0, . . . , fr be computable operations
on ω which respect the equivalence relation E. An E-algebra is then the algebra
(ω(E), F0, . . . , Fr), where each Fi is naturally induced by fi. It is now not hard to
show that an algebra A is a Π0

1-algebra if and only if A is an E-algebra for some
Π0

1 equivalence relation E. In a similar way, an algebra A is a Σ1-algebra if and
only if A is an E-algebra for some computably enumerable equivalence relation E.

The isomorphism type of an algebra A is the set of all algebras isomorphic to A.
We are interested in those algebras whose isomorphism types contain Π0

1-algebras.
We formalize this in the following definitions. An algebra is Π0

1-presentable if it is
isomorphic to a Π0

1-algebra. Note that there is a distinction between Π0
1-algebras

and Π0
1-presentable algebras. Π0

1-algebras are given explicitly by Turing machines
representing the basic operations and the complement of the equality relation of
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the algebra, while Π0
1-presentability refers to the property of the isomorphism types

of algebras. All these notions make sense for Σ0
1-presentable algebras as well, and

we will use them without explicit definitions.
There are some notational conventions we need to make. LetA be a Π0

1-algebra.
As the equality relation on A can be thought of as an equivalence relation (with
a c.e. complement) on ω, we can refer to the elements of A as natural numbers
keeping in mind that each number n represents an equivalence class (that is, an
element of A). Thus, n can be regarded either as an element of A, representing
the equivalence class containing n, or the natural number n. The meaning which
we use will be clear from the content. Sometimes we denote elements of A by [n],
with [n] representing the equivalence class containing the number n.

5.2 Failing non-computable Σ0
1-presentations

This section is for completeness and the main theorem is from [44]. However,
we provide more applications of the theorem in order to contrast Σ0

1- and Π0
1-

presentations of algebras in the last section.
Let A and B be Σ0

1-algebras. A homomorphism h from the algebra A into
the algebra B is called a computable homomorphism if there exists a computable
function f : ω → ω such that h is induced by f . In other words, for all n ∈ ω, we
have h([n]) = [f(n)]. We call f a representation of h. Clearly, if h is a computable
homomorphism, then its kernel, that is, the set {(n,m) | h([n]) = h([m])}, is
computably enumerable. We say that h is proper if there are distinct [n] and [m]
in A whose images under h coincide. In this case the image h(A) is called a proper
homomorphic image of A.

Our goal is to give a syntactic characterization of Σ0
1-algebras that are com-

putable. Let A be a Σ0
1-algebra. A fact is a computably enumerable conjunction

&i∈ωϕi(c̄i) of sentences, where each ϕi(c̄i) is of the form ∀x̄ψi(x̄, c̄i) with ψi(x̄, c̄i)
being the negation of an atomic formula. Call all non-computable Σ0

1-algebras
properly Σ0

1. For example, any finitely generated algebra with undecidable equal-
ity problem is properly Σ0

1.

Definition 5.2.1. An algebra A preserves the fact &i∈ωϕi(c̄i) if A satisfies the
fact and there is a proper homomorphic image of A in which the fact is true.

The theorem below tells us that properly Σ0
1-algebras possess many homomor-

phisms which are well behaved with respect to the facts true in A.

Theorem 5.2.2. A Σ0
1-algebra A is properly Σ0

1 if and only if A preserves all the
facts true in A.

Proof. Assume that A is a computable algebra. We can make the domain of A to
be ω. Thus, in the algebra A, the fact &i 6=j(i 6= j) is clearly true. This fact cannot
be preserved in any proper homomorphic image of A.
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For the other direction, we first note the following. Given elements m and
n of the algebra, it is possible to effectively enumerate the minimal congruence
relation, denoted by η(m,n), of the algebra which contains the pair (m,n). Now
note that if [m] = [n], then η(m,n) is the equality relation inA. Denote byA(m,n)
the quotient algebra obtained by factorizing A by η(m,n). Clearly, A(m,n) is
computably enumerable.

Now assume that A is a properly Σ0
1-algebra and &i∈ωϕi(c̄i) is a fact true in

A which cannot be preserved. Hence, for any m and n in the algebra, if [m] 6=
[n], then in the quotient algebra A(m,n) the fact &i∈ωϕi(c̄i) cannot be satisfied.
Therefore, for given m and n, there exists an i such that in the quotient algebra
A(m,n) the sentence ¬ϕi(c̄i) is true. Now the sentence ¬ϕi(c̄i) is equivalent to
an existential sentence quantified over a positive atomic formula. Note that the
existential sentences quantified over positive atomic formulas true in A(m,n) can
be computably enumerated. Hence, in the original algebra A, for all m and n,
either [m] = [n] or there exists an i such that ¬ϕi(c̄i) is true in A(m,n). This
shows that the equality relation in A is computable, contradicting the assumption
that A is a properly Σ0

1-algebra. The theorem is proved.

There are several interesting corollaries of the theorem above.

Corollary 5.2.3. If A is properly computably enumerable, then any two distinct
elements m and n in A can be homomorphically mapped into distinct elements in
a proper homomorphic image of A.

Proof. Indeed, take the fact m 6= n true in A and apply the theorem.

Call two homomorphic images h1(A) and h2(A) of an algebra A distinct if the
congruences induced by h1 and h2 are different.

Corollary 5.2.4. If A is properly computably enumerable, then any fact true in
A is true in infinitely many distinct homomorphic images of A. In particular, A
cannot have finitely many congruences.

Proof. Let ϕ be a fact true in A. By the theorem above, there is a homomorphic
image h1(A) in which ϕ is true and distinct elements m1 and n1 in A for which
h1(m1) = h1(n1). Now consider the fact ϕ&(m1 6= n1) and apply the theorem to
this fact. There is a homomorphic image h2(A) in which ϕ&(m1 6= n1) is true and
distinct elements m2 and n2 in A for which h2(m2) = h(n2). Now consider the fact
ϕ&(m1 6= n1)&(m2 6= n2) and apply the theorem to this fact. The corollary now
follows by induction.
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This theorem can now be applied to provide several algebraic conditions for
computable algebras not to have properly Σ0

1-presentations.

Corollary 5.2.5. In each of the following cases an infinite computably enumerable
algebra A is computable:

1) There exists a c.e. sequence (xi, yi) such that [xi] 6= [yi] for all i, and for any
non-trivial congruence relation η, there is (xj, yj) for which ([xj], [yj]) ∈ η.

2) A has finitely many congruences.

3) A is finitely generated and every non-trivial congruence relation on A has a
finite index.

4) No computable field has a properly Σ0
1-presentation.

5) No finitely generated computable algebra has a properly Σ0
1-presentation.

Proof. For part 1), we see that the fact &i∈ω[xi] 6= [yi] is true in A. The assump-
tion states that this fact cannot be preserved in any proper homomorphic image
of A. Hence A must be a computable algebra by the theorem above. For part
2), let η0,. . .,ηk be all the non-trivial congruences of A; for each ηi, take (xi, yi)
such that [xi] 6= [yi] and ([xi], [yi]) ∈ ηi. Then the fact &i6k([xi] 6= [yi]) is true
in A but cannot be preserved in any proper homomorphic image of A. Thus,
A is a computable algebra. For part 3), consider any two elements [m] and [n]
in A and consider the congruence relation η([m], [n]) defined in the proof of the
theorem. By the assumption, [m] 6= [n] iff the algebra A(m,n) is finite. The
set X = {(m,n) | A(m,n) is finite} is computably enumerable. Hence, the fact
&(m,n)∈X([m] 6= [n]) is true in A but cannot be preserved in any proper homomor-
phic image of A. For part 4), consider a computable field F = (F ; +,×, 0, 1). This
algebra has only two congruence relations (both are trivial). Hence by part 2),
F does not have a proper Σ0

1-presentation. For the last part, assume that A is a
computable finitely generated algebra. Let a1, . . . , an be the generators. Note that
for any element b ∈ A, there exists a term tb over the generating set {a1, . . . , an}
whose value in A equals b. Consider the following fact &b 6=ctb 6= tc. Clearly, this
fact is true in the algebra but cannot be preserved in any proper homomorphic
image of A. Hence all Σ0

1-presentations of A fail to be non-computable.

Note that from the corollary above, all finitely generated term algebras, infinite
computable fields, and arithmetic fail to possesses non-computable Σ0

1-presenta-
tions. The last section shows that all these algebras possess non-computable Π0

1-
presentations.
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5.3 Term-separable algebras

In this section we define the notion of term-separable algebras and provide several
examples of such algebras.

Definition 5.3.1. Let A = (A, f1, . . . , fr) be an algebra. We say that A is term-
separable if for every finite set of terms {t1(x, y), . . . , tn(x, y)} with parameters from
A, every J ⊆ {1, . . . , n}2, and every a ∈ A, the following holds:

A �
∧
〈k,l〉∈J

tk(a, a) 6= tl(a, a) −→ ∃b1 ∃b2 (b1 6= b2) ∧
∧
〈k,l〉∈J

tk(b1, b2) 6= tl(b1, b2).

Proposition 5.3.2. Let A be an infinite algebra and for every two terms t1(x)
and t2(x) with parameters from A, the set {a ∈ A : A � t1(a) = t2(a)} is either
finite or equals A. Then A is term-separable.

Proof. Consider a set of terms t1(x, y), . . . , tn(x, y) with parameters from A and a
set J ⊆ {0, . . . , n}2 such that

A �
∧
〈k,l〉∈J

tk(a, a) 6= tl(a, a).

Consider the terms t1(x, a), . . . , tn(x, a). For each 〈k, l〉 ∈ J , let Bk,l = {b ∈
A : A � tk(b, a) = tl(b, a))}. Since a /∈ Bk,l, Bk,l is finite. Then there exists
b ∈ A \

⋃
〈k,l〉∈J

Bk,l such that b 6= a. Hence,

A �
∧
〈k,l〉∈J

tk(b, a) 6= tl(b, a).

In the next proposition we provide several examples of term-separable algebras.

Proposition 5.3.3. The following algebras are term-separable:

1) arithmetic (ω, S,+,×),

2) term algebras,

3) infinite fields,

4) torsion-free abelian group,

5) infinite vector spaces over a finite field.

Proof. For arithmetic or an infinite field, every term t(x) with parameters is equiv-
alent to a polynomial with coefficients from the set of natural numbers or from the
field, respectively. Every non-zero polynomial has only finitely many zeros. Hence,
the condition of Proposition 5.3.2 holds, and these algebras are term-separable. For
part 2), consider two terms t1(x) and t2(x) such that A � t1(a) 6= t2(a) for some
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a ∈ A. Therefore, the terms t1(a) and t2(a) differ syntactically and, hence, t1(x)
and t2(x) differ syntactically. So, A � ∀b (t1(b) 6= t2(b)) which implies that any
term algebra is term-separable. For part 4), any term t(x) is equal to the expres-
sion nx+ a, where n ∈ Z and a ∈ A. Since the group is torsion-free, the equation
t(x) = 0 has at most one solution if n 6= 0 or a 6= 0. The proof for the case of
infinite vector spaces is similar to the above.

5.4 Admitting non-computable Π0
1-presentations

This section is devoted to the proof of the following result.

Theorem 5.4.1. Let A = (A; f1, . . . , fr) be a computable term-separable algebra
and d be any c.e. Turing degree. Then A possesses a Π0

1-presentation of degree d.
In particular, it possesses a non-computable Π0

1-presentation.

Proof. We will construct the required Π0
1-presentation of A step-by-step. At the

end of step s, we have a number ns and a collection of finite sets {Cs
i }i∈ω given

by their canonical indices such that Cs
i 6= ∅ for i 6 ns, and Cs

i = ∅ for i >
ns. Also we have partial functions h1, . . . , hr with dom(hi) ⊆ (∪i∈ωCs

i )
mi and

range(hi) ⊆ ∪i∈ωCs
i , where mi is the arity of fi. Each hi has the following property:

if 〈c1
j , c

2
j〉 ∈ ηs for all j 6 mi, then 〈hi(c̄1), hi(c̄

2)〉 ∈ ηs, where

∀ x, y ∈ ∪i∈ωCs
i 〈x, y〉 ∈ ηs ⇐⇒ ∃ i {x, y} ⊆ Cs

i .

Furthermore, if t1(c̄1) and t2(c̄2) are terms constructed from the functions h1, . . . ,
hr with c̄1, c̄2 ∈ ∪i∈ωCs

i that differ syntactically, then their values are also different,
provided that they are both defined.

Call g ∈ ∪i∈ωCs
i a ground element if for every term t(x̄) constructed from the

functions h1, . . . , hr such that t(x̄) is not equal to some variable x or constant c,
we have that g 6= t(c̄) for every tuple c̄ ∈ ∪i∈ωCs

i . Note that for every d ∈ ∪i∈ωCs
i ,

there exists a unique term t(c̄) constructed from the functions h1, . . . , hr with a

tuple c̄ of ground elements such that d = t(c̄). We denote this term by d̃. Note
that if g is a ground element, then g̃ = g.

For each i 6 ns, we have a triple of ground elements ai, bi, ei that are all distinct.
Initially {ai, bi, ei} ⊆ Cs

i , but in some subsequent step ai and bi may move to other
sets Cs

j , C
s
k, while ei is always in Cs

i to ensure that this set will never be empty.
Also, the mapping ψs : i → Cs

i gives us a partial isomorphism between A ∩
{0, . . . , ns} and {Cs

i }i6ns in the following sense: for all i 6 r, for every tuple
a1, . . . , ami

∈ {0, . . . , ns}, and for every tuple c1, . . . , cmi
such that cj ∈ Cs

aj
, if

hi(c̄) is defined, then fi(ā) 6 ns and hi(c̄) ∈ Cs
fi(ā).

Define a function gs : ∪i∈ω Cs
i → ω such that gs(a) = i if a ∈ Cs

i . Let D be a
c.e. set of degree d and let Ds denote the elements enumerated in D by the step
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s. When we add a new element during the construction, we always take the least
number that has not been used so far.

Step 0. Let C0
0 = {a0, b0, e0} and n0 = 0.

Step s+ 1 . This step has three substeps. At the end of substep l (l = 1, 2, 3), we
will have constructed the sets Cs,l

i .
Case A. If for all i 6 ns, i /∈ Ds or gs(ai) 6= gs(bi), then

1) Let ns+1 = ns + 1 and Cs,1
i = Cs

i for i 6 ns+1.

2) Put new (ground) elements ans+1 , bns+1 , ens+1 into Cs,2
ns+1

and let Cs,2
i = Cs,1

i for
i 6 ns.

3) For every i 6 r, every tuple a1, . . . , ami
∈ {0, . . . , ns+1} such that fi(ā) 6 ns+1,

and every tuple c1, . . . , cmi
such that cj ∈ Cs,2

aj
, if hi(c̄) has not yet been defined,

then add a new element to Cs,3
fi(ā) and declare it to be the value of hi(c̄).

Let Cs+1
i = Cs,3

i for all i 6 ns+1.
Case B. If the condition of case A does not hold, then take the least i with the

property i ∈ Ds and gs(ai) = gs(bi) = i. Consider the set

D = {t(c̄) : ∃ d ∈ ∪i∈ω Cs
i such that d̃ = t(c̄)}.

If t(c̄) ∈ D, then let t∗(x, y) be the term obtained from t(c̄) by replacing each
occurrence of ai with x, each occurrence of bi with y, every parameter c with gs(c),
and every functional symbol hi with fi. For example, the terms t1 = ai and t2 = bi
are in D. Then t∗1 = x and t∗2 = y.

Let D = {t1(c̄1), . . . , tn(c̄n)} and J = {〈k, l〉 : A � t∗k(i, i) 6= t∗l (i, i)}. By the
assumption of the theorem, there exist j1 6= j2 such that

A �
∧
〈k,l〉∈J

t∗k(j1, j2) 6= t∗l (j1, j2).

Note that we can effectively find the minimal pair of elements with this property
because A is computable. Now,

1) Move every d = t(c̄) ∈ ∪i∈ω Cs
i to the set Cs,1

k , where k = t∗(j1, j2). In partic-
ular, note that ai is moved to Cs,1

j1
and bi is moved to Cs,1

j2
. Let ns+1 be the

maximal i such that Cs,1
i 6= ∅.

2) For each ns < i 6 ns+1, put new elements ai, bi, ei into Cs,2
i and let Cs,2

i = Cs,1
i

for i 6 ns.

3) For every i 6 r, every tuple a1, . . . , ami
∈ {0, . . . , ns+1} such that fi(ā) 6 ns+1,

and every tuple c1, . . . , cmi
such that cj ∈ Cs,2

aj
, if hi(c̄) has not yet been defined,

then add a new element to Cs,3
fi(ā) and declare it to be the value of hi(c̄).

Let Cs+1
i = Cs,3

i for all i 6 ns+1. This concludes step s+ 1.

The following lemmas describe some properties of the construction.
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Lemma 5.4.2. For all s and every c, d ∈ ∪i∈ω Cs
i , if gs(c) 6= gs(d), then gs+1(c) 6=

gs+1(d).

Proof. Let c̃ = t1(c̄1) and d̃ = t2(c̄2). If we do not split any pair {ai, bi} at step
s+1, then, clearly, gs+1(c) = gs(c) 6= gs(d) = gs+1(d). Suppose that we split {ai, bi}
at step s + 1. Consider the terms t∗1(x, y), t∗2(x, y). Then gs+1(c) = t∗1(j1, j2) and
gs+1(d) = t∗2(j1, j2). Since t∗1(i, i) = gs(t1(c̄1)) = gs(c) 6= gs(d) = gs(t2(c̄2)) = t∗2(i, i)
and we choose j1 6= j2 such that they preserve the inequality, we have gs+1(c) 6=
gs+1(d).

Lemma 5.4.3. For all s, ns < ns+1.

Proof. If we do not split any pair {ai, bi} at step s + 1, then ns+1 = ns + 1.
Suppose that we split some {ai, bi} at this step. For each j 6 ns, consider the
ground element ej ∈ Cs

j . Also consider the ground elements ai, bi from Cs
i . By our

construction, ej ∈ Cs+1
j for all j 6 ns, and ai ∈ Cs+1

j1
, bi ∈ Cs+1

j2
. If j1 or j2 is less

than or equal to ns, then it equals i. Since j1 6= j2, it is impossible that j1, j2 6 ns.
Hence, j1 > ns or j2 > ns and, therefore, ns+1 > ns.

Lemma 5.4.4. For every i 6 r and every mi-tuple c̄, there exists a step s at which
hi(c̄) is defined. Hence hi is a total computable function.

Proof. Take some s0 such that c̄ ∈ ∪Cs0
i . Let c̄ = c1, . . . , cmi

and consider the
terms c̃j = tj(d̄j), j 6 mi. Take the minimal n such that all the tuples d̄j, j 6 mi,
of ground elements belong to the set {a0, b0, e0, . . . , an, bn, en}. Take s1 > s0 such
that after step s1 we do not split any pair {ai, bi}, i 6 n. This means that for all
s > s1, gs(cj) = gs1(cj). Let gs1(cj) = aj and take s2 > s1 such that fi(ā) 6 ns2 .
Such s2 exists by Lemma 5.4.3. Now, if hi(c̄) has not yet been defined, then, since
cj ∈ Cs2

aj
and fi(ā) 6 ns2 , we will define hi(c̄) at this step.

Now take any d ∈ N and consider the term d̃ = t(c̄). There exists a step s0 after
which we do not split any pair {ai, bi} of ground elements such that ai ∈ c̄ or bi ∈ c̄.
Then gs(d) = gs0(d) for all s > s0. This means that there exists g(d) = lims gs(d).
Let Ci = {d : g(d) = i}. Note that Ci 6= ∅ because ei ∈ Ci.

Lemma 5.4.5. At every step s, the following properties hold:

(i) for every i 6 r and every mi-tuples c̄1 and c̄2 such that gs(c̄
1) = gs(c̄

2), if
hi(c̄

1) and hi(c̄
2) are both defined, then gs(hi(c̄

1)) = gs(hi(c̄
2)),

(ii) ψs : i→ Cs
i is a partial isomorphism between A ∩ {0, . . . , ns} and {Cs

i }i6ns.

Proof. First, note that (ii) implies (i). Now prove (ii) by induction on s. It suffices
to prove the following statement:

for every i 6 r, every mi-tuple ā and every mi-tuple c̄ such that cj ∈
Cs,1
aj

, if hi(c̄) is defined, then fi(ā) 6 ns+1 and hi(c̄) ∈ Cs,1
fi(ā).
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This is because when we put new elements into Cs,2
i or Cs,3

i , we do it according to
the partial isomorphism.

If we do not split any pair of ground elements at step s+1, then there is nothing
to prove. Suppose that we split {ai, bi} at this step. Then we move every d such

that d̃ = t(c̄) to the set Cs,1
k , where k = t∗(j1, j2).

Take any mi-tuple c̄ such that cj ∈ Cs,1
aj

and hi(c̄) is defined. Let c̃j = tj(ūj).
Then, by the construction, aj = t∗j(j1, j2). So, we have

gs+1(hi(c̄)) = gs+1(hi(t1(ū1), . . . , tmi
(ūmi

))) =

fi(t
∗
1(j1, j2), . . . , t∗mi

(j1, j2)) = fi(ā).

Also note that fi(ā) 6 ns+1 by the choice of ns+1.

Consider a relation η defined as follows:

〈x, y〉 ∈ η ⇐⇒ g(x) = g(y).

Lemma 5.4.6. η is a congruence relation on (N, h1, . . . , hr) and (N, h1, . . . , hr)/η
is isomorphic to A.

Proof. Obviously, η is an equivalence relation. Now, take any hi and two mi-tuples
c̄1 and c̄2 such that g(c̄1) = g(c̄2). Take s0 such that hi(c̄

1) and hi(c̄
2) are defined

at step s0 and

∀s > s0 gs(c̄
1) = g(c̄1) & gs(c̄

2) = g(c̄2) &

gs(hi(c̄
1)) = g(hi(c̄

1)) & gs(hi(c̄
2)) = g(hi(c̄

2)).

From Lemma 5.4.5(i) it follows that ∀s > s0 gs(hi(c̄
1)) = gs(hi(c̄

2)) and, therefore,
g(hi(c̄

1)) = g(hi(c̄
2)). So, η is a congruence.

Recall that Ci = {d : g(d) = i}. Now prove that the mapping ψ : i → Ci
gives us an isomorphism between A and (N, h1, . . . , hr)/η. Take any mi-tuple ā
and mi-tuple c̄ such that g(c̄) = ā. We need to prove that g(hi(c̄)) = fi(ā).

Take s0 such that hi(c̄) is defined at the step s0 and

∀s > s0 gs(c̄) = g(c̄) and gs(hi(c̄)) = g(hi(c̄)).

From Lemma 5.4.5(ii) it follows that gs(hi(c̄)) = fi(ā) for all s > s0. Hence
g(hi(c̄)) = fi(ā).

Lemma 5.4.7. η is a Π0
1 relation whose Turing degree is d.

Proof. Show that N2 \ η is Σ0
1. We have

〈x, y〉 /∈ η ⇐⇒ g(x) 6= g(y)⇐⇒ ∃s (x, y ∈ ∪i∈ω Cs
i & gs(x) 6= gs(y)),

where the second equivalence follows from Lemma 5.4.2. Therefore, η is Π0
1.
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Now prove that the degree of η is d. From the construction of Theorem 5.4.1
it follows that i ∈ D iff 〈ai, bi〉 /∈ η. Hence D 6T η. Show that η 6T D. Take any
two numbers x, y and find the least s such that x, y ∈ ∪i6nsC

s
i . Let x̃ = t1(d̄1) and

ỹ = t2(d̄2), where d̄1, d̄2 ∈ {a0, b0, c0, . . . , ans , bns , cns}. Find the least s1 > s such
that we have split all the pairs {ai, bi} for i ∈ D ∩ {0, . . . , ns} by step s1. Then
〈x, y〉 ∈ η iff gs1(x) = gs1(y).

Therefore, the theorem is proved.

This theorem together with the Proposition 5.3.3 give us the following examples
of computable algebras that admit non-computable Π0

1-presentations.

Corollary 5.4.8. The following algebras possess non-computable Π0
1-presentations:

1) arithmetic (ω, S,+,×),

2) term algebras,

3) infinite computable fields (F,+,×, 0, 1),

4) computable torsion-free abelian groups,

5) infinite computable vector spaces over a finite field.
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Chapter 6
Finite automata presentable abelian
groups

In this chapter we construct new examples of FA presentable torsion-free abelian
groups and also provide a new FA presentation of the group Z × Z. Here is the
outline of the chapter.

In the first section we will give the precise definition of an FA presentable
structure that was informally discussed in the General Introduction. In the second
section we describe an FA presentation of the group Rp that will be used in our
main construction. In Section 6.3 we introduce the notion of an amalgamated
product for monoids and abelian groups. In the next section we prove that under
certain conditions the amalgamated product of FA presentable groups or monoids
is itself FA presentable. In Section 6.5 we describe indecomposable and strongly
indecomposable abelian groups and show that they are FA presentable using the
methods from Section 6.4. Finally, in the last section of this chapter we construct
a new automatic presentation of the group Z×Z such that every nontrivial cyclic
subgroup in that presentation is not FA recognizable.

6.1 Preliminaries

We now give the formal definitions that will be used in this chapter.

Definition 6.1.1. Let Σ be a finite alphabet, and ā = (a1, . . . , ak) be a tuple of
words from Σ∗. A convolution of ā is a word in the alphabet (Σ ∪ {�})k which
is constructed by placing the words a1, . . . , ak one under another and adding a
special symbol � at the end of some words to get the same length. For example,

Conv(01, 1011, 100) =
0 1 � �
1 0 1 1
1 0 0 �

A convolution of a relation R ⊆ (Σ∗)k is defined as Conv(R) = {Conv(ā) : ā ∈ R}.

Definition 6.1.2. A relation R ⊆ (Σ∗)k is FA recognizable, or regular, if Conv(R)
is recognized by a finite automaton.

Definition 6.1.3. A structure A = (A;R1, . . . , Rn, f1, . . . , fm) is FA presented if,
for a finite alphabet Σ, A ⊆ Σ∗ is an FA recognizable set of words in Σ∗, and all
the relations R1, . . . , Rn together with the graphs of the operations f1, . . . , fm are
recognized by finite automata.

A structure A is FA presentable if it is isomorphic to an FA presented structure.
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In some cases in order to prove that a given structure is FA presentable we
will not construct its automatic presentation explicitly. Instead, we will give its
first-order interpretation in a structure already known to be FA presented. The
description of this method together with the formal definitions and proofs can be
found in [4].

6.2 An FA presentation of the group Rp

Definition 6.2.1. Let p be either a prime number or a product of different primes.
Then Rp is the subgroup of (Q,+) consisting of the elements of the form k/pi.

In the literature Rp is also denoted by Q(p) (for example, see [16]) or Z[1/p].
The next theorem shows that Rp is FA presentable, and we will use this particular
presentation of Rp in Section 6.5 to construct new examples of FA presentable
abelian groups.

Theorem 6.2.2. Rp is FA-presentable.

Proof. First, we will construct an automatic presentation of R+
p , the submonoid

of Rp consisting of the elements greater than or equal to 0. Later we describe how
to obtain an FA presentation of the entire group Rp from the one for R+

p .

The alphabet of the FA presentation of R+
p will be Σ = {

(
n
m

)
: n ∈ {0, 1} and

m ∈ {0, . . . , p − 1}}. Every element z ∈ R+
p will be represented by two lines of

digits,

n1 n2 · · · nk
m1 m2 · · · mk

where n1n2 . . . nk represents the integral part of z in binary presentation with the
least significant digit first, and m1m2 . . .mk represents the fractional part of z in
base p with the most significant digit first. If needed, we put additional zeros to
the right to make the lengths of the integral and fractional parts to be equal. For

example, if p = 3, then the element 14
17

27
∈ R+

3 is represented by

0 1 1 1
1 2 2 0

Let the domain D of the FA presentation of R+
p consist of all words in Σ∗ not

ending in
(

0
0

)
except for

(
0
0

)
itself, which represents 0. Clearly, D is FA recognizable.

Let Add be the graph of the addition operation. We prove that Add is FA
recognizable. First, we construct an auxiliary automaton A whose alphabet is
(Σ∪{�})3. The states of A are q0, (0, 0), (0, 1), (1, 0), (1, 1), where q0 is the initial
state and (0, 0) is the final state. The state (α, β) denotes the fact that we have a
carry bit α in the addition of the integral parts and a carry bit β in the addition
of the fractional parts.
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The transitions of A are defined below. It is assumed there that the special
symbol � is identical to the symbol

(
0
0

)
.

There is a transition from q0 to (α, β) with the label
((

n1

m1

)
,
(
n2

m2

)
,
(
n3

m3

))>
if and

only if {
n1 + n2 = 2α + n3

m1 +m2 + β = m3

or

{
n1 + n2 + 1 = 2α + n3

m1 +m2 + β = p+m3 .

This means that from the first letter of the input A guesses the carry bit from the
fractional part to the integral part: in the first case the carry bit is 0, while in the
second case the carry bit is 1.

There is a transition from (α, β) to (α′, β′) with the label
((

n1

m1

)
,
(
n2

m2

)
,
(
n3

m3

))>
if and only if {

n1 + n2 + α = 2α′ + n3

m1 +m2 + β′ = pβ +m3 .

Now, as one can see, Conv(Add) = L(A) ∩ Conv(D3). Therefore, since D3 is
FA recognizable, then so is Add.

Let us define an FA presentation of Rp. Consider the presentation of R+
p given

above; let π : D2 → D2 be the following function

π(x, y) =

{
(x− y, 0) if x > y,

(0, y − x) if x < y.

Note that the graph of π is an FA recognizable subset of D4 since it can be defined
in terms of Add and 6 relations which are FA recognizable in our presentation of
R+
p . Now the domain of the FA presentation of Rp is{

(x, y) : x, y ∈ D and (x = 0 ∨ y = 0)
}

with the addition operation defined as

(x1, y1) + (x2, y2) = (x3, y3) if and only if (x3, y3) = π(x1 + x2, y1 + y2).
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6.3 Amalgamations of monoids and abelian groups

Before turning to abelian groups, let us consider commutative monoids which have
the cancellation property, namely, a + c = b + c implies a = b for all elements
a, b, c. In what follows, by a monoid we will mean a commutative monoid with
cancellation property.

Proposition 6.3.1. Let M , N , and U be monoids, and f : U → M , g : U → N
be isomorphic embeddings. Consider the direct product M ×N of the monoids and
a relation ∼U on M ×N defined as follows:

(x0, y0) ∼U (x1, y1) ⇐⇒ ∃u, v ∈ U
(
x0 + f(u) = x1 + f(v) ∧
y0 + g(u) = y1 + g(v)

)
Then ∼U is a congruence on M×N , and M⊕UN , the amalgamated product of
M and N over U , is the quotient structure M×N/ ∼U , which is also a commutative
monoid with cancellation property.

Proof. It is straightforward to show that ∼U is a congruence and that M ⊕U N
is a commutative monoid. We prove that it possesses the cancellation property.
Suppose (x0, y0) + (z, w) ∼U (x1, y1) + (z, w); then x0 + z + f(u) = x1 + z + f(v)
and y0 +w + g(u) = y1 +w + g(v) for some u, v ∈ U . Since M and N possess the
cancellation property, we have that x0 +f(u) = x1 +f(v) and y0 +g(u) = y1 +g(v),
that is, (x0, y0) ∼U (x1, y1).

We will use the notation 〈x, y〉U to denote the equivalence class of (x, y) ∈
M ×N with respect to ∼U .

Proposition 6.3.2. Let M ⊕U N be an amalgamated product of monoids M and
N over U . Then there are submonoids M̃ and Ñ in M ⊕U N such that M̃ ∼= M ,
Ñ ∼= N , and M ⊕U N = M̃ + Ñ .

Proof. Let M̃ = {〈x, 0〉U : x ∈ M} and Ñ = {〈0, y〉U : y ∈ N}; as one can see, M̃

and Ñ are submonoids of M⊕UN , and M⊕UN = M̃+Ñ . Consider the mappings
ϕ : M → M̃ and ψ : N → Ñ such that ϕ(x) = 〈x, 0〉U and ϕ(y) = 〈0, y〉U . Clearly,
ϕ and ψ are epimorphisms. Let us show, for instance, that ϕ is one-to-one. Suppose
〈x, 0〉U = 〈x′, 0〉U ; then x + f(u) = x′ + f(v) and g(u) = g(v) for some u, v ∈ U .
Therefore, u = v and the cancellation property implies that x = x′.

In the case of abelian groups we can define the notion of an amalgamated
product in a slightly different manner.

Definition 6.3.3. Let A, B, and U be abelian groups and f : U → A, g : U → B
be isomorphic embeddings. Then A ⊕U B, the amalgamated product of A and B
over U , is the quotient group A⊕B/Ũ where Ũ = {(f(u), g(u)) | u ∈ U}.

The next proposition is the strengthening of 6.3.2 for abelian groups.
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Proposition 6.3.4. Let A⊕U B be an amalgamated product of A and B over U .
Then there are subgroups Ã and B̃ in A⊕UB such that Ã ∼= A, B̃ ∼= B, Ã∩B̃ ∼= U ,
and A⊕U B = Ã+ B̃, where Ã+ B̃ = {a+ b | a ∈ Ã, b ∈ B̃}.

Proof. By definition A ⊕U B = A ⊕ B/Ũ . Let Ã = {(a, 0) + Ũ | a ∈ A} and

B̃ = {(0, b) + Ũ | b ∈ B}. As one can see, A ⊕U B = Ã + B̃ and Ã ∼= A, B̃ ∼= B.

We now prove that Ã∩B̃ ∼= U . Let x ∈ Ã∩B̃, then x = (a, 0)+Ũ and x = (0, b)+Ũ ;

hence (a,−b) ∈ Ũ and a = f(u), b = −g(u). Therefore, x = (f(u), 0) + Ũ and

Ã ∩ B̃ = {(f(u), 0) + Ũ | u ∈ U} which is isomorphic to U .

Remark 6.3.5. The intersection M̃ ∩ Ñ of the submonoids of M ⊕U N defined
in the proof of Proposition 6.3.2 is not necessarily isomorphic to U . To show this,
let M , N , U be (N,+) and f , g be the identity embeddings. As one can see,
M ⊕U N is isomorphic to (Z,+) because 〈x, y〉N = 〈x′, y′〉N iff x − y = x′ − y′,

and we can identify 〈x, y〉N with x − y ∈ Z. In this case, M̃ and Ñ correspond
to the submonoids of non-negative and non-positive numbers, respectively. Thus
M̃ ∩ Ñ = {〈0, 0〉N} 6∼= N.

The converse of 6.3.4 also holds.

Proposition 6.3.6. Let L be an abelian group, A,B be subgroups of L, and U =
A ∩B. Then

A+B ∼= A⊕U B,

where the embeddings f , g of U into A and B are the identity mappings.

Proof. In this case, A ⊕U B = A ⊕ B/Ũ , where Ũ = {(u, u) | u ∈ U}. Let
ϕ : A⊕U B → A+B be defined as follows:

ϕ((a, b) + Ũ) = a− b.

We show that ϕ is an isomorphism. First, note that it is well defined: if (a, b)+Ũ =

(a′, b′) + Ũ , then (a − a′, b − b′) = (u, u) for some u ∈ U ; therefore, a − b =
(a′ + u)− (b′ + u) = a′ − b′.

It is easy to see that ϕ is an epimorphism. We now prove that it is one-
to-one. Let a − b = a′ − b′; then a − a′ = b − b′ ∈ A ∩ B = U . Therefore,
(a− a′, b− b′) = (u, u) ∈ Ũ and (a, b) + Ũ = (a′, b′) + Ũ .

Remark 6.3.7. If M , N , and U are abelian groups, then both definitions of an
amalgamated product, that is the one for the groups and the one for the monoids,
give us the same structure M ⊕U N .
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6.4 Constructions of FA presentable monoids and

abelian groups

In this section we will prove a version of Proposition 6.3.2 for FA presentable
structures.

Theorem 6.4.1. If M , N , and U are FA presented monoids and f : U → M ,
g : U → N are isomorphic embeddings that are FA recognizable subsets of U ×M
and U×N , respectively, then the amalgamated product M⊕U N is FA presentable.
Moreover, M ⊕U N contains FA recognizable submonoids M̃ and Ñ such that
M̃ ∼= M , Ñ ∼= M , and M ⊕U N = M̃ + Ñ .

Proof. We prove that M ⊕U N is FA presentable by constructing its interpretation
in the FA presentable structure E = M tN tU enriched with the unary predicates
for the subsets M , N , U and the binary predicates Rf and Rg for the graphs of
f and g. Let RM and RN be the graphs of the addition operation in M and N ,
respectively.

The domain of M ⊕U N is defined in E2 by the formula ∆(x0, y0) = M(x0) ∧
N(y0). Addition is defined by

Φ(x0, y0, x1, y1, x2, y2) = RM(x0, x1, x2) ∧ RN(y0, y1, y2).

Equality is defined by

ε(x0, y0, x1, y1) = ∃u, v (U(u) ∧ U(v) ∧ x0 + f(u) = x1 + f(v)

∧ y0 + g(u) = y1 + g(v))

or more formally

ε(x0, y0, x1, y1) =∃u, v, w0, w1, w2, w3, z0, z1 (U(u) ∧ U(v) ∧Rf (u,w0)

∧Rf (v, w1) ∧Rg(u,w2) ∧Rg(v, w3) ∧RM(x0, w0, z0)

∧RM(x1, w1, z0) ∧RN(y0, w2, z1) ∧RN(y1, w3, z1)).

From the proof of Proposition 6.3.2 it follows that M̃ and Ñ are defined by the
formulas

(z0, z1) ∈ M̃ ⇐⇒ ∃x, u, v (M(x) ∧ U(u) ∧ U(v)∧
z0 + f(u) = x+ f(v) ∧ z1 + g(u) = g(v)),

(z0, z1) ∈ Ñ ⇐⇒ ∃y, u, v (N(y) ∧ U(u) ∧ U(v)∧
z0 + f(u) = f(v) ∧ z1 + g(u) = y + g(v)).

Therefore, M̃ and Ñ are FA recognizable submonoids.
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Theorem 6.4.2. Let A and B be abelian groups such that B is a subgroup of A
and |A : B| is finite. If B is FA presentable, then so is A.

Proof. Let r0, . . . , rk be representatives of the cosets of B in A. Then there are
a function g : {0, . . . , k}2 → {0, . . . , k} and elements bij ∈ B with the following
property: for every i and j,

ri + rj = rg(i,j) + bij.

We may assume that the FA presentation of B uses an alphabet Σ, such that
0, . . . , k /∈ Σ, and that the domain of this presentation is D ⊆ Σ∗. Let the alphabet
of the FA presentation of A be Σ ∪ {0, . . . , k}. Each element of A has the unique
form ri + b for some b ∈ B and is represented by the string iv, where v ∈ D
represents b. Since A is abelian,

(ri + b1) + (rj + b2) = rg(i,j) + bij + b1 + b2.

Hence, the graph of the addition operation can be recognized by a finite automaton.

Example 6.4.3 (Two different presentations of R6). Consider the presentation
of R6 described in Section 6.2. We will show that R6 in this presentation does
not have an FA recognizable subgroup isomorphic to R2. Suppose M is an FA
recognizable subgroup of R6 and M ∼= R2. Let M+ = {(x, 0) : (x, 0) ∈ M};
then M+ is FA recognizable and M+ ∼= R+

2 . Note that we can identify the FA
presentation of R+

6 and the FA recognizable submonoid of R6 with the domain
{(x, 0) : (x, 0) ∈ R6}. This implies that R+

6 has an FA recognizable submonoid
isomorphic to R+

2 .
Now if M+ 6 R+

6 is isomorphic to R+
2 , then for some n0, k0 ∈ N

M+ =
n0

6k0
·R+

2 =

{
n0n3k

6k0+k
: k, n ∈ N

}
.

For each k, let αk be the smallest element ofM+ of length k0+k in this presentation.
Obviously, αk = n03k6−(k0+k) and it has the form

0 0 · · · 0 0 · · · 0
0 0 · · · 0 rk

where

lim
k→∞

length(rk)

(k + k0)
= log6 3. (6.1)

Choosing sufficiently large k we will have enough leading zeros in the presentation
of αk to pump this string. This will give us a contradiction with the formula (6.1).
Therefore, M+ is not FA recognizable, and M is not FA recognizable too.

On the other hand, R6 is isomorphic to R+
2 ⊕N R

+
3 . Indeed, R+

2 ⊕N R
+
3 =

{〈x, y〉N : (x, y) ∈ R+
2 ×R+

3 } and

〈x, y〉N = 〈x′, y′〉N if and only if x− y = x′ − y′.
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Let z = m/6k ∈ R6; there are m0,m1 ∈ Z such that m = 3km0 − 2km1; then
z = m0/2

k−m1/3
k = (m0/2

k+ l)−(m1/3
k+ l) for any l ∈ Z. Choosing sufficiently

large l, we see that z = x − y, where x ∈ R+
2 , y ∈ R+

3 . Therefore, the mapping
that sends 〈x, y〉N to x− y ∈ R6 gives us desired isomorphism.

Consider the FA presentations of R+
2 and R+

3 described in Section 6.2. Recall
that the integral part of every element is presented in base 2 both in R+

2 and R+
3 .

Thus, if we take the FA presentation of N in base 2, then the graphs of the identity
embeddings f : N → R+

2 and g : N → R+
3 will be FA recognizable. Therefore, by

Theorem 6.4.1, R6 has an FA presentation which contains FA recognizable sub-
monoids isomorphic to R+

2 and R+
3 . Now if M+ ⊆ R6 is a submonoid isomorphic

to R+
2 , then M = M+ ∪ −M+ is a subgroup isomorphic to R2. Clearly, M is

definable in terms of M+ and addition. Therefore, this presentation of R6 contains
FA recognizable subgroups isomorphic to R2 and R3. It is different from the pre-
sentation given in Section 6.2 in the sense that there is no automatic isomorphism
between them.

6.5 Indecomposable FA presentable abelian groups

We describe rank n torsion-free abelian groups, Gn and Hn, which are indecom-
posable and strongly indecomposable, respectively. We then show how to apply
the methods from the previous section to prove that they are FA presentable.

In what follows, we will use an expression like p−∞a as an abbreviation for the
infinite set p−1a, p−2a, . . . . For n > 2, let Gn be the subgroup of Qn generated by
p−∞1 e1, . . . , p

−∞
n en, q−1(e1 + · · · + en), where q, p1, . . . , pn are different primes and

e1, . . . , en are linear independent elements in Qn considered as a Q-vector space.
An example of such group can be found in [16, vol. 2, §88, Exercise 2].

Definition 6.5.1. A torsion-free abelian group A is indecomposable if for all B
and C, A = B ⊕ C implies B = 0 or C = 0.

Theorem 6.5.2. The group Gn is indecomposable for any n > 2.

Proof. First, note that every x ∈ Gn has the form

x = (p−k11 m1 + q−1s)e1 + · · ·+ (p−kn
n mn + q−1s)en,

where m1, . . . ,mn, s ∈ Z and k1, . . . , kn ∈ N. Let Ej = 〈p−∞j ej〉 where 1 6 j 6 n.
We show that the groups Ej are fully invariant in Gn, i.e. ϕ(Ej) ⊆ Ej for any
endomorphism ϕ of Gn. Let x ∈ Ej and ϕ(x) =

∑
siei. In Gn, x is divisible by

all the powers of pj, and so is ϕ(x). Hence, si = 0 for i 6= j and ϕ(x) = sjej.

Take any i 6= j. As mentioned above, sj has the form p
−kj

j mj + q−1s and si
has the form p−ki

i mi + q−1s. Since si = 0, q−1s must be an integer. Therefore,
ϕ(x) = sjej belongs to Ej.

Now suppose that Gn = A⊕B. If x ∈ Gn, then x has the unique form x = a+b,
where a ∈ A, b ∈ B. Define the following endomorphisms of Gn: ϕA(x) = a and
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ϕB(x) = b, where x = a + b. Obviously, x = ϕA(x) + ϕB(x). If x ∈ Ej, then
ϕA(x) ∈ Ej ∩ A and ϕB(x) ∈ Ej ∩ B since Ej is fully invariant. This means that
Ej = (Ej ∩ A)⊕ (Ej ∩B).

Note that Ej is indecomposable because it has rank 1. Therefore, Ej ⊆ A or
Ej ⊆ B. Assume there exists 1 6 k < n such that, possibly after re-indexing,
E1, . . . , Ek ⊆ A and Ek+1, . . . , En ⊆ B. Let q−1(e1 + · · ·+en) = a+ b, where a ∈ A
and b ∈ B. Then e1 + · · ·+ ek + ek+1 + · · ·+ en = qa+ qb. Since e1 + · · ·+ ek ∈ A
and ek+1 + · · ·+ en ∈ B, we have that a = q−1(e1 + · · ·+ ek).

We show that this is impossible. Let a = (p−k11 m1 + q−1s)e1 + · · ·+ (p−kn
n mn +

q−1s)en; since p−kn
n mn + q−1s = 0, q−1s must be an integer. Hence p−k11 m1 + q−1s

cannot be equal to q−1.
So, we can assume that E1, . . . , En ⊆ A. If B 6= 0, then let b ∈ B be a nonzero

element. Then there exists m > 0 such that mb ∈ 〈e1, . . . , en〉 ⊆ E1 + · · ·+En ⊆ A,
which is impossible because mb 6= 0 and mb is an element of B. Therefore, B = 0.

Definition 6.5.3 ([2]). A torsion-free abelian group A is strongly indecomposable
if whenever 0 6= k ∈ N and kA 6 B ⊕ C 6 A, then B = 0 or C = 0.

The group Hn from the next theorem was introduced in [2, Example 2.4].

Theorem 6.5.4. The group Hn = gr(p−∞1 e1, . . . , p
−∞
n en, q

−∞(e1 + · · · + en)) is
strongly indecomposable for any n > 2.

Proof. First, we show that any endomorphism of Hn is the same as the multipli-
cation by an integer. Let x ∈ Hn; by an argument similar to one at the beginning
of the proof of Theorem 6.5.2, one can show that if x is divisible in Hn by all the
powers of pi, then x has the form mp−ki ei.

Now let ê1 = −e1, . . . , ên−1 = −en−1, ên = e1 + · · ·+en. Then en = ê1 + · · ·+ ên
and we can write

Hn = gr(p−∞1 ê1, . . . , p
−∞
n−1ên−1, p

−∞
n (ê1 + · · ·+ ên), q−∞ên)).

Therefore, if x is divisible in Hn by any power of q, then it has the form mq−kên =
mq−k(e1 + · · ·+ en).

Let ϕ be an endomorphism of Hn; then ϕ(ei) = riei, where ri = mip
−ki
i , because

ϕ(ei) is divisible by any power of pi. Hence ϕ(e1 + · · · + en) =
∑
riei. On the

other hand, since ϕ(e1 + · · · + en) is divisible by all the powers of q, it has the
form mq−k(e1 + · · · + en). Therefore, each ri is equal to an integer number r
and ϕ(x) = rx. Since the group is torsion-free, every nonzero endomorphism is
one-to-one.

To conclude the proof, we will show that if a torsion-free abelian group A
has only one-to-one nonzero endomorphisms, then it is strongly indecomposable.
Assume that there are k 6= 0 and nonzero groups B and C such that kA 6 B⊕C 6
A. Let ψ be an endomorphism of B ⊕ C defined as follows: if x = b + c, where
b ∈ B, c ∈ C, then ψ(x) = b. Then the mapping ϕ defined by ϕ(x) = ψ(kx)
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is an endomorphism of A. Take any 0 6= c ∈ C, then ϕ(c) = ψ(kc) = 0 and,
therefore, ϕ is not one-to-one. Note that ϕ is also nonzero since if 0 6= b ∈ B, then
ϕ(b) = kb 6= 0.

Theorem 6.5.5. The group Gn is FA presentable.

Proof. Since, by Theorem 6.2.2, Rp is FA presentable, the direct sum Rp1⊕· · ·⊕Rpn

is also FA presentable. Note that Rp1 ⊕ · · · ⊕ Rpn is a subgroup of finite index in
Gn. Hence, by Theorem 6.4.2, Gn is also FA presentable.

Remark 6.5.6. Note that, unlike Gn, the group Hn is not an extension of finite
index of any known example of an FA presentable group. To show that it is FA
presentable we will use the method of amalgamated products described in Section
6.4.

Theorem 6.5.7. The group Hn is FA presentable.

Proof. First, let us show that Hn is isomorphic to (R+
p1
× · · · × R+

pn
) ⊕N R

+
q , an

amalgamated product of the monoids R+
p1
× · · · × R+

pn
and R+

q over N, where the
isomorphic embeddings f : N → R+

p1
× · · · × R+

pn
and g : N → R+

q are chosen as
follows: for all m ∈ N, f(m) = (m, . . . ,m) and g(m) = m. Note that our proof
will show that the amalgamated product of these monoids is actually a group.

Every element of (R+
p1
×· · ·×R+

pn
)⊕NR

+
q is of the form 〈(a1, . . . , an), b〉N, where

ai ∈ R+
pi

, for i = 1, . . . , n, and b ∈ R+
q . Suppose that

〈(a1, . . . , an), b〉N = 〈(a′1, . . . , a′n), b′〉N.

Then there are u, v ∈ N such that{
(a1 + u, . . . , an + u) = (a′1 + v, . . . , a′n + v)

b+ u = b′ + v.

This implies that ai − b = a′i − b′ for all i = 1, . . . , n. Thus we can correctly define
a function h on (R+

p1
× · · · ×R+

pn
)⊕N R

+
q such that

h(〈(a1, . . . , an), b〉N) = (a1 − b)e1 + · · ·+ (an − b)en.

As one can see, the range of h is a subset of Hn, and h is a homomorphism. To
show that it is one-to-one, assume that

h(〈(a1, . . . , an), b〉N) = h(〈(a′1, . . . , a′n), b′〉N);

then
(a1 − b)e1 + · · ·+ (an − b)en = (a′1 − b′)e1 + · · ·+ (a′n − b′)en.
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Therefore, ai − a′i = b − b′ ∈ Rpi
∩ Rq for i = 1, . . . , n. Since Rpi

∩ Rq = Z, there
is w ∈ Z such that {

(a1, . . . , an) = (a′1 + w, . . . , a′n + w)

b = b′ + w.

So, 〈(a1, . . . , an), b〉N = 〈(a′1, . . . , a′n), b′〉N.
Now, to prove that h is onto, consider an element z ∈ Hn; it must be of the

form

z =
(m1

pk11

+
l

qr

)
e1 + · · ·+

(mn

pkn
n

+
l

qr

)
en

for some integers mi, l and natural numbers ki, r. Obviously,

mi

pki
i

+
l

qr
=
(mi

pki
i

+ t
)
−
(
− l

qr
+ t
)

for any t ∈ Z. Choosing sufficiently large t, we can make all ai = mi/p
ki
i + t

and b = −l/qr + t to be positive. In this case 〈(a1, . . . , an), b〉N is an element of
(R+

p1
× · · · ×R+

pn
)⊕N R

+
q and h(〈(a1, . . . , an), b〉N) = z. Therefore, the range of h is

Hn, and hence it is an isomorphism.
Consider the FA presentations of the monoidsR+

p1
, . . . , R+

pn
, andR+

q described in
Section 6.2. From this we can easily construct an FA presentation of R+

p1
×· · ·×R+

pn

by putting the strings representing the elements of R+
pi

’s one under another in
columns using an extra padding symbol when necessary. Recall that the integral
part of an element of R+

pi
or R+

q is presented in base 2. Therefore, if we consider
the presentation of N in base 2, then the graphs of the isomorphic embeddings
f : N → R+

p1
× · · · × R+

pn
and g : N → R+

q will be FA recognizable. Now, by
Theorem 6.4.1, the structure (R+

p1
× · · · × R+

pn
) ⊕N R

+
q is FA presentable, and, as

shown above, it is isomorphic to Hn.

6.6 A new FA presentation of Z× Z
Let (Z,+) be the group of integers under addition. In this section we will con-
struct an FA presentation of (Z,+)2 in which no nontrivial cyclic subgroup is FA
recognizable.

Consider Z[x]/〈p3〉, the quotient of the polynomial ring Z[x] with respect to
the ideal generated by p3(x) = x2 + x − 3. We will use the notation p(x) ∼ q(x)
to denote that p3(x) divides p(x)− q(x).

Remark 6.6.1. In the construction described below we can use any polynomial
of the form x2 + x− q, for a prime q > 3, instead of p3(x).
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Let A = (Z[x]/〈p3〉,+) be the additive group of the ring Z[x]/〈p3〉. It is not hard
to see that A is isomorphic to Z2 since every polynomial in Z[x] is equivalent over
〈p3〉 to a linear polynomial kx+ l, which can be identified with a pair (k, l) ∈ Z2.

We say that a polynomial anx
n + · · ·+ a0 ∈ Z[x] is in reduced form (or briefly

reduced) if |ai| 6 2 for all i 6 n.

Proposition 6.6.2. For every p(x) ∈ Z[x], there is a reduced polynomial p̃(x)
equivalent to it.

Proof. This can be proved by induction: assume that p(x) is in reduced form and
show that p(x)±xn is equivalent to a reduced polynomial. It is enough to consider
the case p(x) ± 1 since p(x) ± xn can be rewritten as (q(x) ± 1)xn + r(x), where
q(x) and r(x) are in reduced form and deg(r) < n. Note that if p0(x) and p1(x) are
in reduced forms and have non-negative coefficients, then p0(x)− p1(x) is reduced.
Moreover, any reduced p(x) is equal to the difference of such p0(x) and p1(x).
So, it is enough to consider the case when p(x) is reduced and has non-negative
coefficients and to show that p(x) + 1 is equivalent to a reduced polynomial with
non-negative coefficients.

We will actually prove a stronger statement: if p(x) is a reduced polynomial
with non-negative coefficients, then p(x) + (a1x + a0), where 0 6 a0, a1 6 2, is
equivalent to a polynomial of the same sort. The proof is now by induction on the
degree of p(x).

Let us write p(x) as p(x) = p1(x)x2 + (b1x + b0). Now, using the fact that
3 ∼ x2 + x, we have

p(x) + (a1x+ a0) = p1(x)x2 + (a1 + b1)x+ (a0 + b0)

∼ (p1(x) + r1x+ (r0 + r1))x2 + c1x+ c0,

where

c0 =

{
a0 + b0, if a0 + b0 < 3

a0 + b0 − 3, otherwise
r0 =

[a0 + b0

3

]
,

c1 =

{
a1 + b1 + r0, if a1 + b1 + r0 < 3

a1 + b1 + r0 − 3, otherwise
r1 =

[a1 + b1 + r0

3

]
.

Here, [v] is the integral part of v defined by

[v] =

{
max{k ∈ Z : k 6 v} if v > 0,

min{k ∈ Z : v 6 k} if v < 0.

For example, [1.5] = 1 and [−1.5] = −1. Note that 0 6 c0, c1 6 2 and 0 6 r0, r1 6
1. By induction, p1(x) + r1x+ (r0 + r1) is equivalent to a reduced polynomial with
non-negative coefficients; hence so is p(x).
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We now describe an automatic presentation of the group A. The alphabet of
the presentation is Σ = {−2,−1, 0, 1, 2}. Each reduced polynomial of the form
anx

n + · · · + a0 is represented by the word a0 . . . an ∈ Σ∗. We say that two words
a0 . . . an and b0 . . . bm in Σ∗ are equivalent if anx

n + · · ·+ a0 ∼ bmx
m + · · ·+ b0.

This equivalence relation is FA recognizable. An algorithm for checking it is as
follows. Given two words a0 . . . an and b0 . . . bm, we can assume that n = m since
one can always add extra zeros to the right. The algorithm needs to remember
two carries r0, r1; initially r0 = r1 = 0. Note that since 3 ∼ x + x2, whenever we
subtract 3 from any digit we need to add 1 to the next two digits in order to get
an equivalent word. That is why we need two carries here.

Now, for every i = 0, . . . , n, do the following. Check if 3 divides ai − bi + r0.
If ‘no’, then the words are not equivalent. If ‘yes’, then let rold

0 = r0, rold
1 = r1;

redefine

r0 = rold
1 +

ai − bi + rold
0

3
, r1 =

ai − bi + rold
0

3

and go to the step i+ 1. If we reach in this way the nth step, then the words are
equivalent if and only if an − bn + r0 = 0 and r1 = 0.

Since at every step |r0| 6 4 and |r1| 6 2, this algorithm requires a constant
amount of memory. Now it is not hard to construct a finite automaton recognizing
the equivalence.

Consider the following order on Σ: −2 < −1 < 0 < 1 < 2. It naturally extends
to the length-lexicographical order on Σ∗, denoted as <llex . Let the domain of the
FA presentation of A be

Dom(A) = {w ∈ Σ∗ : (∀u <llex w) u is not equivalent to w}.

This set is FA recognizable since <llex is an FA recognizable relation.
To define addition on Dom(A), consider the relation R(x, y, z) such that if

x = a0 . . . ak, y = b0 . . . bl, then z = c0 . . . cn is obtained from x and y by applying
the following algorithm. Again, let r0, r1 be two carries that are initially zero. For
every step i starting from 0, let ci be such that |ci| < 3,

ci ≡ ai + bi + r0 (mod 3),

and ci has the same sign as ai + bi + r0. Let rold
0 = r0, rold

1 = r1. Now redefine

r0 = rold
1 +

[ai + bi + rold
0

3

]
, r1 =

[ai + bi + rold
0

3

]
and go to the step i+ 1.

For example, if x = 2211 and y = 22 then this algorithm produces z = 120021.
By construction, if R(x, y, z) holds, then the polynomial corresponding to z is
equivalent over 〈p3〉 to the sum of the polynomials represented by x and y. It is
easy to see that at every step, |r0| 6 4 and |r1| 6 2. Thus, as before, R can be
recognized by a finite automaton.
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Let Add(x, y, z) be defined as

Add = {(x, y, z) : x, y, z ∈ Dom(A) and

∃w (R(x, y, w) ∧ w is equivalent to z)}.

Since Dom(A), R, and the equivalence relation are FA recognizable, Add is also FA
recognizable. Obviously, Add is the graph of the addition operation on Dom(A),
and the FA presented structure (Dom(A),Add) is isomorphic to A.

Our next goal is to show that no nontrivial cyclic subgroup in this presentation
of Z2 is FA recognizable.

Lemma 6.6.3. Let p(x) and q(x) be reduced polynomials such that p(x) ∼ q(x)
and xk | p(x). Then xk | q(x).

Proof. Suppose that xk - q(x); then p(x)− q(x) = xl(a0 + a1x+ · · · ), where l < k,
|a0| 6 2, and a0 6= 0. Since 3 - a0, p3(x) = x2 + x − 3 cannot divide p(x) − q(x),
which gives a contradiction.

For p(x) ∈ Z[x], consider the set of words in Σ∗ that represent the polynomials
equivalent to p(x). All these words start with the same number of zeros. So, we
say that p(x) starts with k zeros in reduced form if there is w ∈ Σ∗ representing
p(x) that starts with k zeros.

The following lemma will be used several times later on.

Lemma 6.6.4. Let n be an integer; then 3k | n if and only if n starts with k zeros
in reduced form.

Proof. Suppose that 3k | n; then n = 3km ∼ xk(x+ 1)km. Taking a reduced form
for (x+ 1)km and multiplying it by xk, we obtain a reduced form for n that starts
with k zeros. Thus n starts with k zeros in reduced form.

The other implication can be proved by induction on k. First, suppose that n
starts with one 0 in reduced form and n = 3m + r, where 0 < r 6 2. Take any
reduced form for 3m. Since it starts with 0, n = 3m + r has a reduced form that
starts with r 6= 0. This contradicts our assumption, and hence 3 | n.

It is not hard to see that if p(x) starts with exactly k zeros in reduced form and
q(x) starts with exactly l zeros, then any reduced form for p(x)q(x) starts with
exactly k + l zeros. Now suppose that n starts with k + 1 zeros in reduced form;
then n = 3m and m starts with k zeros because 3 ∼ 011 starts with one 0. By
induction, 3k | m, and so we have 3k+1 | n.

Let α = (
√

13− 1)/2 be the positive root of p3(x) = x2 + x− 3. Consider the
mapping F : Z[x]→ R defined as F : p(x) 7→ p(α). Obviously,

(p+ q)(α) = p(α) + q(α) and (pq)(α) = p(α)q(α).

Furthermore, if p(x) ∼ q(x), then p(α) = q(α) since p(α)− q(α) = p3(α)r(α) = 0.
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Consider an arbitrary nontrivial cyclic subgroup in our presentation of Z2. It
has the form

〈w〉 = {n · w : n ∈ Z}

for some w ∈ Dom(A). Let q(x) be the polynomial that corresponds to w. Note
that q(α) 6= 0 since w represents nonzero element. Indeed, by applying the Eu-
clidean algorithm one can see that there are polynomials s, r with deg(r) < 2 such
that q = s · p3 + r. Moreover, since the leading coefficient of p3 is 1, s and r have
integer coefficients. Now if q(α) = 0, then r(α) = 0, which implies that r = 0 since
α is irrational. So, q is equal to s ·p3 and hence is equivalent to 0. This contradicts
our assumption that w represents nonzero element.

Suppose that 〈w〉 is recognized by a finite automaton with d states. We know
that 3d · w ∈ 〈w〉 starts with d zeros in reduced form. So, let 3d · w be equivalent
to 0dv ∈ Dom(A). By the Pumping Lemma, there are s0, s1, t ∈ N with t 6= 0 such
that 0dv = 0s00t0s1v and wk = 0tk+s0+s1v ∈ 〈w〉 for all k > 0.

Let qk(x) be the polynomial that corresponds to wk. Since wk ∈ 〈w〉, we have
that wk ∼ nk ·w for some nk ∈ Z. If w starts with m zeros, then nk starts with at
least tk −m+ s0 + s1 zeros in reduced form; thus 3tk−m+s0+s1 | nk.

The fact that wk is equivalent to nk · w implies that qk(α) = nkq(α). Now, on
the one hand,

|qk(α)| 6 2(1 + α + · · ·+ α|wk|−1)

= 2
α|wk| − 1

α− 1
6 8α|wk| = 8αs0+s1+|v|αtk = C0α

tk.

On the other hand,

|qk(α)| = |nk||q(α)| > 3tk3s0+s1−m|q(α)| = C13tk.

Therefore,
C13tk 6 C0α

tk for all k > 0,

which is impossible because α < 3. Hence 〈w〉 is not FA recognizable.
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