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Abstract
We consider the membership problem for matrix semigroups, which is the problem to decide
whether a matrix belongs to a given finitely generated matrix semigroup.

In general, the decidability and complexity of this problem for two-dimensional matrix semi-
groups remains open. Recently there was a significant progress with this open problem by showing
that the membership is decidable for 2× 2 nonsingular integer matrices. In this paper we focus
on the membership for singular integer matrices and prove that this problem is decidable for 2×2
integer matrices whose determinants are equal to 0, 1, −1 (i.e. for matrices from GL(2,Z) and
any singular matrices). Our algorithm relies on a translation of numerical problems on matrices
into combinatorial problems on words and conversion of the membership problem into decision
problem on regular languages.
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1 Introduction

Matrices and matrix products play a crucial role in the representation and analysis of various
computational processes such as linear recurrent sequences [13, 21, 22], arithmetic circuits
[11], hybrid and dynamical systems [20, 2], probabilistic and quantum automata [7], stochas-
tic games, broadcast protocols [10]. Many problems for matrices in dimension three and four
are undecidable, but the decidability and complexity of problems for two-dimensional matrix
semigroups remains open. One of such hard questions is the Membership problem.
Membership problem: Given a finite set of m×m matrices F = {M1,M2, . . . ,Mn} and
a matrix M . Determine whether there exist an integer k ≥ 1 and i1, i2, . . . , ik ∈ {1, . . . , n}
such that

Mi1 ·Mi2 · · ·Mik = M.

In other words, determine whether a matrix M belongs to the semigroup generated by F .
There are only few known decidability results for the membership problem when the

dimension is not bounded. In 1986 Kannan and Lipton [14] proved that the membership is
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decidable in polynomial time for a semigroup generated by a single m×m matrix (known as
the Orbit problem). Later, in 1996 this decidability result was extended to a more general
case of commutative matrices [1]. A generalization of this result to a special class of non-
commutative matrices (a class of row-monomial matrices over a commutative semigroup
satisfying some natural effectiveness conditions) was shown in 2004 in [16]. On the other
hand, it is known that the membership is already undecidable for 3×3 integer matrices with
determinant 0 (i.e. singular matrices), see [23]. As for the nonsingular case, it is known that
the membership is undecidable for 4 × 4 integer matrices with determinant one, see [5]. A
more recent survey of undecidable problems can be found in [8].

Due to a severe lack of methods and techniques the status of decision problems for 2× 2
matrices (like membership, vector reachability, freeness) remains a long standing open prob-
lem. Recently, a new approach of translating numerical problems on 2× 2 integer matrices
into a variety of combinatorial and computational problems on words over group alphabet
and studying their transformations as specific rewriting systems have led to new results on
decidability and complexity. The main ingredient of the translation into combinatorial prob-
lems on words is the well-known result that the groups SL(2,Z) and GL(2,Z) are finitely
generated. For example, SL(2,Z) can be generated by a pair of matrices

S =
[
0 −1
1 0

]
and R =

[
0 −1
1 1

]
with the following relations: S4 = I, R6 = I and S2 = R3. So, we can represent a matrix
M ∈ SL(2,Z) as a word in the alphabet {S,R}.

In particular, this symbolic representation was successfully used to show the decidability
of the membership problem for the semigroups of GL(2,Z) [9] in 2005 and of the mortality
problem for 2 × 2 integer matrices with determinants 0,±1 [19] in 2008. It also found
applications in the design of the polynomial time algorithm for the membership problem for
the modular group [12] in 2007. Furthermore, it was used to show NP-hardness for most of
the reachability problems in dimension two [6, 3] in 2012 and to prove decidability of the
vector/scalar reachability problems in SL(2,Z) [24] in 2016.

In 2017 a significant progress was made towards decidability of the membership problem
for 2×2 integer matrices extending previously known result on GL(2,Z) [9]. In [25] the first
algorithm was discovered that can check the membership problem for a matrix semigroup
generated by nonsingular 2 × 2 integer matrices. In this paper we show another extension
of [9] and prove that the membership problem is decidable for 2× 2 integer matrices whose
determinants are equal to 0, 1, −1 (i.e. for matrices from GL(2,Z) and any singular matrices).
As a first step we give an alternative proof of the decidability of the mortality problem (i.e.
membership for the zero matrix) from [19], in which we will use the Smith normal forms of
matrices. In contrast to [19], our new approach allows us to generalize this proof to show
decidability of the membership problem for singular matrices. The algorithm is based on a
nontrivial combination of algebraic properties of GL(2,Z), automata theory and properties
of matrix products with singular matrices.

2 Preliminaries

The semigroup of 2 × 2 integer matrices is denoted by Z2×2. Let GL(2,Z) be the general
linear group of dimension 2 over Z, that is, the group of 2 × 2 integer matrices whose
determinant is equal to ±1. We will use O to denote the zero 2 × 2 matrix. A matrix is
called singular if its determinant is equal to zero and nonsingular otherwise.
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If F is a finite collection of matrices from Z2×2, then 〈F〉 denotes the semigroup generated
by F (including the identity matrix), that is, M ∈ 〈F〉 if and only if M = I or there are
matrices M1, . . . ,Mn ∈ F such that M = M1 · · ·Mn.

Consider the following matrices from GL(2,Z):

N =
[
1 0
0 −1

]
, S =

[
0 −1
1 0

]
, R =

[
0 −1
1 1

]
, X = −I =

[
−1 0
0 −1

]
.

Every word in the alphabet Σ = {N,S,R,X} corresponds to a matrix from GL(2,Z) in a
natural way. Namely, the letters N,S,R,X correspond to the matrices defined by the above
formulas, and a word w ∈ Σ∗ corresponds to the product of its letters. For example, the

word SR corresponds to the matrix
[
−1 −1
0 −1

]
.

It is well-known that GL(2,Z) is generated by the above matrices. So any M ∈ GL(2,Z)
can be presented by a word in the alphabet Σ = {N,S,R,X}. Such presentation is not
unique because of the identities like S2 = R3 = X. However for every matrixM ∈ GL(2,Z),
there is a unique canonical word that represents it, as described below.

I Definition 1. A word w ∈ Σ∗ is called a canonical word if it has the form

w = NδXγSβRα0SRα1SRα2 . . . SRαn−1SRαn ,

where β, δ, γ ∈ {0, 1}, α0, . . . , αn−1 ∈ {1, 2}, and αn ∈ {0, 1, 2}. In other words, w is
canonical if it does not contain subwords SS or RRR. Moreover, letter N may appear only
once in the first position, and letter X may appear only once either in the first position or
after N .

I Proposition 2 ([17, 18, 26, 25]). For every M ∈ GL(2,Z), there is a unique canonical
word w which represents M .

We will also use two additional matrices T =
[
1 1
0 1

]
, U =

[
1 0
1 1

]
and the following

identities: R = ST , T = XSR, T−1 = XR2S, U = XSR2 and U−1 = XRS .

I Definition 3. A subset S ⊆ GL(2,Z) is called regular or automatic if there is a regular
language L in alphabet Σ that describes S. That is, every word w ∈ L corresponds to a
matrix M from S, and for every matrix M ∈ S, there is a word w ∈ L that represents M .

I Definition 4. We call two words w1 and w2 from Σ∗ equivalent, denoted w1 ∼ w2, if
they represent the same matrix. Two languages L1 and L2 in the alphabet Σ are equivalent,
denoted L1 ∼ L2, if
(i) for each w1 ∈ L1, there exists w2 ∈ L2 such that w1 ∼ w2, and
(ii) for each w2 ∈ L2, there exists w1 ∈ L1 such that w2 ∼ w1.
In other words, L1 and L2 are equivalent if and only if they describe the same language.
Two finite automata A1 and A2 over alphabet Σ are equivalent, denoted A1 ∼ A2, if
L(A1) ∼ L(A2).

The next theorem will be a crucial ingredient of our decidability result.

I Theorem 5. Given two regular subsets S1 and S2 of GL(2,Z), it is decidable whether the
intersection S1 ∩ S2 is empty or not.

MFCS 2017
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Proof. The proof is based on the following result: for every finite automatonA over alphabet
Σ, there is an automaton Can(A) such that Can(A) accepts only canonical words and
Can(A) ∼ A, that is, Can(A) and A describe the same subset of GL(2,Z). The construction
of Can(A) can be found in [25], see also [9] for an alternative construction.

Now let L1 and L2 be regular languages that describe S1 and S2, respectively, and let A1
and A2 be finite automata such that L(A1) = L1 and L(A2) = L2. By Proposition 2, every
matrix from GL(2,Z) corresponds to a unique canonical word. Therefore, we obtain the
following equivalence: S1∩S2 6= ∅ if and only if the languages of the automata Can(A1) and
Can(A2) have nonempty intersection. Since the emptiness problem for regular languages is
decidable, it is decidable whether S1 ∩ S2 is empty or not. J

Another important ingredient of our proof is the existence and uniqueness of the Smith
normal form of a matrix.

I Theorem 6 (Smith normal form [15]). For any matrix A ∈ Z2×2, there are matrices E,F

from GL(2,Z) such that A = E

[
t1 0
0 t2

]
F for some nonnegative integers t1 and t2 such that

t1 | t2. The diagonal matrix
[
t1 0
0 t2

]
, which is unique, is called the Smith normal form of

A. In fact, t1 is equal to the gcd of the coefficients of A. Moreover, E, F , t1, and t2 can be
computed in polynomial time.

Remark. If A ∈ Z2×2 is nonzero matrix with det(A) = 0, then the Smith normal form

of A is equal to
[
t 0
0 0

]
, where t is the gcd of the coefficients of A.

Using uniqueness of the Smith normal form we obtain the following corollary.

I Corollary 7. If E,F ∈ GL(2,Z), then E
[
1 0
0 0

]
F is not a zero matrix.

3 Main result

The main result of our paper is the following theorem.

I Theorem 8. Let M ∈ Z2×2 and let F = {A1, . . . , An, B1, . . . , Bm} be a collection of
matrices from Z2×2 such that Ai ∈ GL(2,Z) for i = 1, . . . , n, and Bj is a singular matrix
for j = 1, . . . ,m. Then it is decidable whether M ∈ 〈F〉.

Proof. First, note that if M ∈ 〈F〉, then M is either singular or M ∈ GL(2,Z). Therefore,
if |det(M)| > 1, then we know that M /∈ 〈F〉. On the other hand, if det(M) = ±1, i.e. if
M ∈ GL(2,Z), then M ∈ 〈F〉 if and only if M ∈ 〈A1, . . . , An〉. In other words, our problem
reduces to the membership problem in GL(2,Z), and the decidability of the membership in
GL(2,Z) was proven in [9].

Hence from now on we will assume that M is a singular matrix. First, we consider
the case when M is the zero matrix and after that we consider the case when M is a
nonzero singular matrix. The case when M = O is also called the Mortality problem. The
decidability of the mortality problem for matrices with determinants 0 and ±1 was shown
in [19]. In Theorem 11 below we provide an alternative proof of this fact, which is based on
the use of the Smith normal form of a matrix. Another reason why we include the proof of
Theorem 11 is that it presents a simplified version of a more complicated construction for a
nonzero M . Finally, in Theorem 13 we prove decidability of the membership problem for a
nonzero singular matrix M . J
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First, we prove Proposition 9 which will play an important role in the proofs of Theorems
11 and 13. Moreover, Proposition 9 and Corollary 10 reveal new structural properties of
certain subsets of GL(2,Z) in symbolic presentation.

I Proposition 9. For any fixed a ∈ Z, let M(a) =
{[
a b

c d

]
∈ GL(2,Z) : b, c, d ∈ Z

}
.

Then M(a) is a regular subset of GL(2,Z).

Proof. First, suppose that a = 0. Then

M(0) =
{[

0 −1
1 d

]
: d ∈ Z

}⋃{[
0 1
−1 d

]
: d ∈ Z

} ⋃
{[

0 1
1 d

]
: d ∈ Z

}⋃{[
0 −1
−1 d

]
: d ∈ Z

}
.

Note that
[
0 −1
1 d

]
= ST d,

[
0 1
−1 d

]
= −ST−d,

[
0 1
1 d

]
= SNT d,

[
0 −1
−1 d

]
= −SNT−d.

Hence we can express M(0) as

M(0) ={ST d : d ∈ Z} ∪ {−ST−d : d ∈ Z} ∪ {SNT d : d ∈ Z} ∪ {−SNT−d : d ∈ Z} =
{ST d : d ≥ 0} ∪ {S(T−1)d : d ≥ 0} ∪ {−S(T−1)d : d ≥ 0} ∪
{−ST d : d ≥ 0} ∪ {SNT d : d ≥ 0} ∪ {SN(T−1)d : d ≥ 0} ∪
{−SN(T−1)d : d ≥ 0} ∪ {−SNT d : d ≥ 0}.

Therefore, M(0) can be described by the following regular expression

S(XSR)∗ + S(XR2S)∗ + XS(XR2S)∗ + XS(XSR)∗+
SN (XSR)∗ + SN (XR2S)∗ + XSN (XR2S)∗ + XSN (XSR)∗.

Now suppose that a 6= 0. Consider a matrix A =
[
a b

c d

]
∈ GL(2,Z) and let b = b0 +ma

and c = c0 + na, where b0, c0 ∈ {0, . . . , |a| − 1} and m,n ∈ Z. Since A ∈ GL(2,Z), we have
ad− bc = ±1 or

d = bc± 1
a

= (b0 +ma)(c0 + na)± 1
a

= b0c0 ± 1
a

+mc0 + nb0 +mna.

Since d is an integer, b0c0±1
a must also be an integer. Note that

A =
[
a b

c d

]
=
[

a b0 +ma

c0 + na b0c0±1
a +mc0 + nb0 +mna

]
=
[

1 0
n 1

][
a b0
c0

b0c0±1
a

][
1 m

0 1

]
.

So, A = Un
[
a b0
c0

b0c0±1
a

]
Tm. Let N+(a) and N−(a) be the following finite sets

N+(a) = {(b0, c0) : b0, c0 ∈ {0, . . . , |a| − 1} and b0c0+1
a is an integer },

N−(a) = {(b0, c0) : b0, c0 ∈ {0, . . . , |a| − 1} and b0c0−1
a is an integer }.

Then

M(a) =
⋃

(b0,c0)∈N+(a)

{
Un
[
a b0
c0

b0c0+1
a

]
Tm : n,m ∈ Z

} ⋃
⋃

(b0,c0)∈N−(a)

{
Un
[
a b0
c0

b0c0−1
a

]
Tm : n,m ∈ Z

}
.

MFCS 2017
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For each (b0, c0) ∈ N+(a), let w+(b0, c0) be a word that represents the matrix
[
a b0
c0

b0c0+1
a

]
.

Note that for every (b0, c0) ∈ N+(a), we can present
{
Un
[
a b0
c0

b0c0+1
a

]
Tm : n,m ∈ Z

}
as

a union of four sets{
Un
[
a b0
c0

b0c0+1
a

]
Tm : n,m ≥ 0

} ⋃ {
(U−1)n

[
a b0
c0

b0c0+1
a

]
Tm : n,m ≥ 0

} ⋃
{
Un
[
a b0
c0

b0c0+1
a

]
(T−1)m : n,m ≥ 0

}⋃{
(U−1)n

[
a b0
c0

b0c0+1
a

]
(T−1)m : n,m ≥ 0

}
.

Hence it can be described by the following regular expression

(XSR2)∗w+(b0, c0)(XSR)∗ + (XRS)∗w+(b0, c0)(XSR)∗+
(XSR2)∗w+(b0, c0)(XR2S)∗ + (XRS)∗w+(b0, c0)(XR2S)∗.

Similarly, we have that for every (b0, c0) ∈ N−(a), the set
{
Un
[
a b0
c0

b0c0−1
a

]
Tm : n,m ∈ Z

}
can be described by a regular expression. Since M(a) is equal to a finite union of such sets,
we conclude that it is also regular. J

I Corollary 10. For every i = 1, 2, 3, 4 and any fixed a ∈ Z, the following subset of GL(2,Z)

is a regular set: Mi(a) =
{[
a1 a2
a3 a4

]
∈ GL(2,Z) : ai = a and aj ∈ Z for j 6= i

}
.

Proof. By definition, M1(a) = M(a), hence it is regular by Proposition 9. Now let L(a)

be a regular language that describes M(a) and let K =
[
0 1
1 0

]
. It is not hard to see that

M2(a) = M(a) ·K, M3(a) = K ·M(a) and M4(a) = K ·M(a) ·K. Note that matrix K

corresponds to the word NXS . Therefore, M2(a), M3(a) and M4(a) can be described by the
regular languages L(a)·{NXS}, {NXS}·L(a) and {NXS}·L(a)·{NXS}, respectively. J

3.1 Mortality problem
In this section we will give an alternative proof of the decidability of the mortality problem
from [19] which will be based on the use of the Smith normal form of a matrix.

I Theorem 11. The mortality problem for 2 × 2 integer matrices with determinants 0,±1
is decidable.

This theorem will be a consequence of Theorem 5 and Propositions 9 and 12.

I Proposition 12. Let F = {A1, . . . , An, B1, . . . , Bm} be a collection of matrices from Z2×2

such that Ai ∈ GL(2,Z) for i = 1, . . . , n, and det(Bj) = 0 for j = 1, . . . ,m. Then O ∈ 〈F〉
if and only if Bj = O for some j or there are indices i, j ∈ {1, . . . ,m} and a matrix
C ∈ 〈A1, . . . , An〉 such that BiCBj = O.

Proof. Suppose that Bj 6= O for every j. Under this assumption, if O ∈ 〈F〉 then there are
indices i1, . . . , is ∈ {1, . . . ,m} and matrices C1, . . . , Cs+1 ∈ 〈A1, . . . , An〉 such that

C1Bi1C2Bi2 · · ·CsBisCs+1 = O. (1)
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By Theorem 6, we can write each matrix Bir , for i = 1, . . . , s, as Bir = Er

[
tr 0
0 0

]
Fr, where

Er, Fr ∈ GL(2,Z) and tr > 0. Then (1) is equivalent to

C1E1

[
t1 0
0 0

]
F1C2E2

[
t2 0
0 0

]
F2 · · ·

· · ·Cs−1Es−1

[
ts−1 0

0 0

]
Fs−1CsEs

[
ts 0
0 0

]
FsCs+1 = O. (2)

Dividing (2) by the product t1t2 · · · ts−1ts, which is nonzero by our assumption, we obtain

C1E1

[
1 0
0 0

]
F1C2E2

[
1 0
0 0

]
F2 · · ·Cs−1Es−1

[
1 0
0 0

]
Fs−1CsEs

[
1 0
0 0

]
FsCs+1 = O. (3)

Suppose for each r = 2, . . . , s the matrix Fr−1CrEr have the form Fr−1CrEr =
[
ar br
cr dr

]
.

Note that
[
1 0
0 0

][
a b

c d

][
1 0
0 0

]
=
[
a 0
0 0

]
. Therefore, (3) is equivalent to

C1E1

[
a2a3 · · · as 0

0 0

]
FsCs+1 = O. (4)

Suppose that a2a3 · · · as 6= 0. In this case (4) is equivalent to

C1E1

[
1 0
0 0

]
FsCs+1 = O,

where C1E1 and FsCs+1 are matrices from GL(2,Z). This contradicts Corollary 7. Hence
a2a3 · · · as = 0, and therefore there is r ∈ {2, . . . , s} such that ar = 0. This implies that
Bir−1CrBir = O. Indeed,

Bir−1CrBir = Er−1

[
tr−1 0

0 0

]
Fr−1CrEr

[
tr 0
0 0

]
Fr.

By assumption, Fr−1CrEr =
[
ar br
cr dr

]
. Thus

Bir−1CrBir = tr−1trEr−1

[
1 0
0 0

][
ar br
cr dr

][
1 0
0 0

]
Fr = tr−1trEr−1

[
ar 0
0 0

]
Fr.

Since ar = 0, we have Bir−1CrBir = O.
The implication on the other direction is trivial. J

Proof of Theorem 11. Obviously, if Bj = O for some j = 1, . . . ,m, then O ∈ 〈F〉. There-
fore, from now on we assume that all Bj ’s are nonzero singular matrices. In this case
Proposition 12 implies that O ∈ 〈F〉 if and only if there are indices i, j ∈ {1, . . . ,m} and a
matrix C ∈ 〈A1, . . . , An〉 such that BiCBj = O. We now show that the latter property is
algorithmically decidable.

Let Bi = Ei

[
ti 0
0 0

]
Fi and Bj = Ej

[
tj 0
0 0

]
Fj be the Smith normal forms of Bi and Bj ,

respectively. Note that by our assumption ti, tj > 0. Let C be a matrix from 〈A1, . . . , An〉.
We have BiCBj = O if and only if

Ei

[
ti 0
0 0

]
FiCEj

[
tj 0
0 0

]
Fj = O or, equivalently, Ei

[
1 0
0 0

]
FiCEj

[
1 0
0 0

]
Fj = O.

MFCS 2017
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Let FiCEj =
[
a b

c d

]
for some a, b, c, d ∈ Z. Then the above equation is equivalent to

Ei

[
1 0
0 0

][
a b

c d

][
1 0
0 0

]
Fj = O or Ei

[
a 0
0 0

]
Fj = O. By Corollary 7, Ei

[
a 0
0 0

]
Fj = O

if and only if a = 0. So, we showed the following equivalence: BiCBj = O if and only if

FiCEj =
[
0 b

c d

]
for some b, c, d ∈ Z.

Let S1 and S2 be the following subsets of GL(2,Z): S1 = {FiCEj : C ∈ 〈A1, . . . , An〉}

and S2 =
{[

0 b

c d

]
∈ GL(2,Z) : b, c, d ∈ Z

}
. In this notations the above equivalence can

be written as follows: there is a matrix C ∈ 〈A1, . . . , An〉 such that BiCBj = O if and only
if S1 ∩ S2 6= ∅.

It is easy to see that S1 is a regular subset of GL(2,Z) as it can be described by the
regular expression ui(w1+· · ·+wn)∗vj , where w1, . . . , wn are words representing the matrices
A1, . . . , An and ui, vj represent the matrices Fi, Ej , respectively. By Proposition 9, S2 is
also a regular subset of GL(2,Z). Using Theorem 5, we can decide whether S1 ∩ S2 6= ∅
and hence decide whether there is a matrix C ∈ 〈A1, . . . , An〉 such that BiCBj = O. This
finishes the proof of Theorem 11. J

3.2 Membership problem
We are now ready to consider the case when M is a nonzero singular matrix.

I Theorem 13. Let F = {A1, . . . , An, B1, . . . , Bm} be a finite collection of matrices such
that A1, . . . , An ∈ GL(2,Z) and B1, . . . , Bm are singular matrices from Z2×2. Also let
M ∈ Z2×2 be a nonzero singular matrix. Then it is decidable whether M ∈ 〈F〉.

Proof. Let M = E

[
t 0
0 0

]
F be the Smith normal form of M , and for each j = 1, . . . ,m,

let Bj = Ej

[
tj 0
0 0

]
Fj be the Smith normal form of Bj . Since M is a nonzero matrix, we

may assume that for each j = 1, . . . ,m, Bj is also a nonzero matrix. Hence without loss of
generality we assume that t, t1, . . . , tm > 0.

We will construct a graph G(M,F), depending onM and F , which will have the following
property: M ∈ 〈F〉 if and only if there is a path in G(M,F) from an initial to a final node
of weight t.

Description of G(M,F). Graph G(M,F) has m nodes labelled by singular matrices
B1, . . . , Bm and two special nodes In and Fin, where In is the only initial node and Fin is
the only final node. The weights of the nodes are defined as follows.

I Definition 14. Recall that Ej
[
tj 0
0 0

]
Fj is the Smith normal form of Bj . Then the weight

of the node with label Bj is equal to tj .

Furthermore, we add edges to this graph according to the following rules.

I Definition 15. (1) For every integer u 6= 0 such that −t ≤ u ≤ t we add an edge from
node Bi to node Bj of weight u if and only if there is a matrix C ∈ 〈A1, . . . , An〉 such that

FiCEj ∈
{[
u b

c d

]
∈ GL(2,Z) : b, c, d ∈ Z

}
.
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(2) We also add an edge of weight u from the initial node In to a node with label Bj if

there is a matrix C ∈ 〈A1, . . . , An〉 such that E−1CEj ∈
{[
u b

0 d

]
∈ GL(2,Z) : b, d ∈ Z

}
.

(3) Finally, we add an edge of weight u from a node with label Bj to the final node Fin if

there is a matrix C ∈ 〈A1, . . . , An〉 such that FjCF−1 ∈
{[
u 0
c d

]
∈ GL(2,Z) : c, d ∈ Z

}
.

Note that the set {FiCEj : C ∈ 〈A1, . . . , An〉} is a regular subset of GL(2,Z) because it
can be described by the regular expression ui(w1 + · · ·+wn)∗vj , where w1, . . . , wn are words
representing the matrices A1, . . . , An and ui, vj represent the matrices Fi, Ej , respectively.

By Proposition 9,
{[
u b

c d

]
∈ GL(2,Z) : b, c, d ∈ Z

}
is also a regular subset of GL(2,Z).

Therefore, by Theorem 5, we can algorithmically decide if there is an edge from node Bi to
node Bj of weight u.

Moreover, the edges going out of In or ending in Fin can only have weights 1 or −1.
Again, using Proposition 9, Corollary 10 and Theorem 5, we can algorithmically decide if
there is an edge from In to Bj or from Bj to Fin of weight 1 or −1.

I Definition 16. The weight of a path in G(M,F) from In to Fin is equal to the product
of the weights of nodes and edges that occur in it. That is, the weight of a path

In u0−→ Bi0
u1−→ Bi1

u2−→ Bi2 · · · Bis−1
us−→ Bis

us+1−−−→ Fin

is equal to u0ti0u1ti1u2ti2 · · · tis−1ustisus+1.

In the following proposition we will show that the membership problem is equivalent to
the existence of a path in G(M,F ) with a given weight.

I Proposition 17. Let M = E

[
t 0
0 0

]
F be the Smith normal form of matrix M . Then

M ∈ 〈F〉 if and only if there is a path in G(M,F) from In to Fin of weight t.

Proof. Suppose

In u0−→ Bi0
u1−→ Bi1

u2−→ Bi2 · · · Bis−1
us−→ Bis

us+1−−−→ Fin

is a path in G(M,F) from In to Fin of weight t. Recall that for every r = 0, . . . , s, we have

Bir = Eir

[
tir 0
0 0

]
Fir . Hence t = u0ti0u1ti1u2ti2 · · · tis−1ustisus+1.

Since for every r = 1, . . . , s we have an edge Bir−1
ur−→ Bir of weight ur, there is a

matrix Cr ∈ 〈A1, . . . , An〉 such that Fir−1CrEir =
[
ur br
cr dr

]
for some br, cr, dr ∈ Z. Since

we have an edge In u0−→ Bi0 of weight u0, there is a matrix C0 ∈ 〈A1, . . . , An〉 such that

E−1C0Ei0 =
[
u0 b0
0 d0

]
for some b0, d0 ∈ Z. And since we have an edge Bis

us+1−−−→ Fin of

weight us+1, there is a matrix Cs+1 ∈ 〈A1, . . . , An〉 such that FisCs+1F
−1 =

[
us+1 0
cs+1 ds+1

]
for some cs+1, ds+1 ∈ Z.

Hence we obtain the following equation

E−1C0Bi0C1Bi1C2Bi2 · · ·Bis−1CsBisCs+1F
−1 =

E−1C0Ei0

[
ti0 0
0 0

]
Fi0C1Ei1

[
ti1 0
0 0

]
Fi1C2Ei2

[
ti2 0
0 0

]
Fi2 · · ·

MFCS 2017
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· · ·Eis−1

[
tis−1 0

0 0

]
Fis−1CsEis

[
tis 0
0 0

]
FisCs+1F

−1 =

ti0ti1ti2 · · · tis−1tis

[
u0 b0
0 d0

][
1 0
0 0

][
u1 b1
c1 d1

][
1 0
0 0

][
u2 b2
c2 d2

][
1 0
0 0

]
· · ·

· · ·
[
1 0
0 0

][
us bs
cs ds

][
1 0
0 0

][
us+1 0
cs+1 ds+1

]
=

ti0u1ti1u2ti2 · · · tis−1ustis

[
u0 b0
0 d0

][
1 0
0 0

][
us+1 0
cs+1 ds+1

]
=

ti0u1ti1u2ti2 · · · tis−1ustis

[
u0us+1 0

0 0

]
= u0ti0u1ti1 · · · tis−1ustisus+1

[
1 0
0 0

]
=
[
t 0
0 0

]
.

Therefore, C0Bi0C1Bi1C2Bi2 · · ·Bis−1CsBisCs+1 = E

[
t 0
0 0

]
F = M , and hence M ∈ 〈F〉.

Now suppose that M ∈ 〈F〉. It is not hard to see that there is a sequence of indices
i0, i1, . . . , is ∈ {1, . . . ,m}, and matrices C0, C1, . . . , Cs+1 ∈ 〈A1, . . . , An〉 such that

C0Bi0C1Bi1C2Bi2 · · ·Bis−1CsBisCs+1 = M. (5)

Recall that E
[
t 0
0 0

]
F is the Smith normal form of M , and Eir

[
tir 0
0 0

]
Fir is the Smith

normal form of Bir , for r = 0, . . . , s. So we can rewrite (5) as follows

E−1C0Ei0

[
ti0 0
0 0

]
Fi0C1Ei1

[
ti1 0
0 0

]
Fi1C2Ei2

[
ti2 0
0 0

]
Fi2 · · ·

· · ·Eis−1

[
tis−1 0

0 0

]
Fis−1CsEis

[
tis 0
0 0

]
FisCs+1F

−1 =
[
t 0
0 0

]
.

(6)

For r = 1, . . . , s, let Fir−1CrEir =
[
ur br
cr dr

]
. Then for every r = 1, . . . , s, there is an edge

Bir−1
ur−→ Bir in G(M,F) of weight ur. Furthermore, suppose that E−1C0Ei0 =

[
u0 b0
c0 d0

]
and FisCs+1F

−1 =
[
us+1 bs+1
cs+1 ds+1

]
. Then we can rewrite (6) as

[
u0 b0
c0 d0

][
ti0 0
0 0

][
u1 b1
c1 d1

][
ti1 0
0 0

][
u2 b2
c2 d2

][
ti2 0
0 0

]
· · ·

· · ·
[
tis−1 0

0 0

][
us bs
cs ds

][
tis 0
0 0

][
us+1 bs+1
cs+1 ds+1

]
=
[
t 0
0 0

]
or equivalently

ti0ti1ti2 · · · tis−1tis

[
u0 b0
c0 d0

][
1 0
0 0

][
u1 b1
c1 d1

][
1 0
0 0

][
u2 b2
c2 d2

][
1 0
0 0

]
· · ·

· · ·
[
1 0
0 0

][
us bs
cs ds

][
1 0
0 0

][
us+1 bs+1
cs+1 ds+1

]
=
[
t 0
0 0

]
.

From this equation we obtain

ti0u1ti1u2ti2 · · · tis−1ustis

[
u0 b0
c0 d0

][
1 0
0 0

][
us+1 bs+1
cs+1 ds+1

]
=
[
t 0
0 0

]
or

ti0u1ti1u2ti2 · · · tis−1ustis

[
u0us+1 u0bs+1
c0us+1 c0bs+1

]
=
[
t 0
0 0

]
.
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Therefore, we have that t = u0ti0u1ti1u2ti2 · · · tis−1ustisus+1 and u0bs+1 = c0us+1 = 0. By
assumption t 6= 0, and so u0 6= 0 and us+1 6= 0. Therefore, c0 = 0 and bs+1 = 0. Hence

we have that E−1C0Ei0 =
[
u0 b0
0 d0

]
and FisCs+1F

−1 =
[
us+1 0
cs+1 ds+1

]
, which means that

there is an edge In u0−→ Bi0 of weight u0 and an edge Bis
us+1−−−→ Fin of weight us+1. Thus

we showed that there is path

In u0−→ Bi0
u1−→ Bi1

u2−→ Bi2 · · · Bis−1
us−→ Bis

us+1−−−→ Fin

in G(M,F) from In to Fin of weight u0ti0u1ti1u2ti2 · · · tis−1ustisus+1 = t. J

The next proposition provides a bound on the length of a path in G(M,F) with weight t.

I Proposition 18. For any integer t > 0, if there is a path in G(M,F) from In to Fin of
weight t, then there is such path of length at most 2m log2 t+ 2m+ log2 t.

Proof. Suppose P is a path in G(M,F) from In to Fin of weight t. Then the number of
nodes and edges in P whose weight is greater than 1 or less than −1 is bounded by log2 t.

A simple cycle at node Bj is a closed path that starts and ends at Bj and in which no
vertex appears twice except for Bj itself.

Note that if P contains a simple cycle of weight 1, then it can be removed from P without
changing its weight. On the other hand, if P contains a simple cycle of weight −1, then
removing such cycle will change the sign of the weight of P .

LetW1 andW2 be a successive pair of nodes or edges in P with weight different from ±1.
Then any node and edge that appears in P strictly between W1 and W2 has weight equal
to ±1. By the above observation we can remove all cycles of weight 1 that occur between
W1 and W2 and leave at most one simple cycle of weight −1 between W1 and W2 in order
to preserve the sign of the weight of P . So we can replace the original path from W1 to W2
by a new path with the same weight and length at most 2m.

Recall there are at most log2 t nodes and edges in P whose weight is different from ±1.
We now apply the above procedure to every pair W1 and W2 of successive nodes or edges in
P whose weight is different from ±1 including the cases when W1 = In or W2 = Fin. There
are at most log2 t + 1 such successive pairs. Therefore, we replace the whole path P with
another path of the same weight and of length at most 2m(log2 t+ 1) + log2 t. Note that we
added log2 t in the end because every edge of weight different from ±1 contributes 1 to the
length of the path. J

Now we complete the proof of Theorem 13 using Propositions 17 and 18. Indeed, by
Propositions 17 to decide whether M ∈ 〈F〉, we need to check if there is a path in G(M,F)
from In to Fin of weight t. By Propositions 18 the length of such path is bounded by
2m log2 t+ 2m+ log2 t. Hence we can check all paths in G(M,F) of length up to 2m log2 t+
2m+ log2 t to see if there is one with weight t. J

Conclusion and future work

The complexity of our algorithm is in EXPTIME. This is because a canonical word that
represents a given matrix M has length exponential in the binary presentation of M . Hence
the construction of regular languages in our proof takes exponential time. Moreover, the
number of paths in G(M,F) of length up to 2m log2 t+ 2m+ log2 t is exponential in m.
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In [4] it has been shown that the identity problem in SL(2,Z) is NP-complete. We would
like to find out whether this construction can be combined with our result to show that the
membership in GL(2,Z) extended by singular matrices is also NP-complete.

In our previous work [25] we proved that the membership problem is decidable for 2× 2
nonsingular integer matrices. In this paper we considered matrices with determinants 0,±1.
So, the next natural step will be to study the decidability of the membership problem for
all 2× 2 integer matrices, i.e. both singular and nonsingular ones.
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