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Abstract

This paper establishes an upper bound on the size of a concept class with given recursive teaching dimension

(RTD, a teaching complexity parameter). The upper bound coincides with Sauer’s well-known bound on

classes with a fixed VC-dimension. Our result thus supports the recently emerging conjecture that the

combinatorics of VC-dimension and those of teaching complexity are intrinsically interlinked.

We further introduce and study RTD-maximum classes (whose size meets the upper bound) and RTD-

maximal classes (whose RTD increases if a concept is added to them), showing similarities but also differences

to the corresponding notions for VC-dimension.

Another contribution is a set of new results on maximal classes of a given VC-dimension.

Methodologically, our contribution is the successful application of algebraic techniques, which we use to

obtain a purely algebraic characterization of teaching sets (sample sets that uniquely identify a concept in

a given concept class) and to prove our analog of Sauer’s bound for RTD. Such techniques have been used

before to prove results relevant to computational learning theory, e.g., by Smolensky (1997), but are not

standard in the field.
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1. Introduction

An important combinatorial result, proven by Sauer (1972) and independently by Shelah (1972), states

that the size of any concept class of Vapnik-Chervonenkis dimension (VC-dimension, introduced by Vapnik

and Chervonenkis (1971)) d is at most
∑d

i=0

(
m
i

)
, where m is the number of instances the concept class is

defined over.

In Computational Learning Theory, this bound (typically called Sauer’s bound) has proven helpful—if

not essential—for a variety of studies, most notably for the definition and analysis of maximum classes.
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A concept class of VC-dimension d over a finite instance space X is maximum, if its size meets Sauer’s

bound.3 Maximum classes exhibit a number of interesting structural properties, e.g., their complements as

well as their restrictions to subsets of the instance space are maximum (Rubinstein et al., 2009; Welzl, 1987).

These structural properties have remarkable implications. For example, maximum classes form one of the

few general cases of concept classes known to have labeled and unlabeled sample compression schemes of

the size of their VC-dimension (Floyd and Warmuth, 1995; Kuzmin and Warmuth, 2007). Moreover, the

recursive teaching dimension (RTD, a complexity parameter of the recently introduced recursive teaching

model (Zilles et al., 2011)) of any maximum class equals its VC-dimension (Doliwa et al., 2010).

Recent work by Doliwa et al. (2010) indicates connections between the VC-dimension and the RTD;

besides maximum classes, several other types of concept classes are shown to have an RTD upper-bounded

by their VC-dimension. An open question is whether or not the RTD has an upper bound linear in the

VC-dimension. Thus recursive teaching is the only model known so far that could potentially establish a

close connection between the complexity of learning from a teacher and the complexity of learning from

randomly chosen examples (the VC-dimension being an essential complexity parameter for the latter).

This paper establishes a further connection between RTD and VC-dimension: its main result is an

analog of Sauer’s bound for RTD. We prove that the size of any concept class of RTD r is at most
∑r

i=0

(
m
i

)
,

where m is the size of the instance space. This new evidence of a strong connection between learning from

a teacher and learning from randomly chosen examples suggests that the study of the recursive teaching

dimension could be of interest in a more general context than just computational teaching. Our result is

proven using algebraic methods, which first provide us with a purely algebraic characterization of teaching

sets. A teaching set for a concept c in a concept class C is a set of labeled examples that is consistent with c

but with no other concept in C; thus it uniquely identifies c in C. Our algebraic characterization of teaching

sets, a second contribution of this paper, is the main ingredient of our proof of Sauer’s bound for RTD, but it

may be of independent interest. In particular, the algebraic techniques applied here may provide new proof

ideas for combinatorial studies in Computational Learning Theory, e.g., using this technique we give an

alternative proof of Kuzmin and Warmuth’s result that maximum classes are shortest-path-closed (Kuzmin

and Warmuth, 2007). Previously, methods from algebra yielded an alternative proof of Sauer’s bound for

the VC-dimension (Smolensky, 1997).

Our Sauer-type bound for RTD naturally allows us to define and study the concept of RTD-maximum

classes—classes whose size meets the upper bound. To distinguish RTD-maximum classes from maximum

classes in the original sense, we refer to the latter as VCD-maximum classes. Although every VCD-maximum

class is shown to be RTD-maximum, RTD-maximum classes turn out to exhibit slightly different proper-

ties. For example, their complements are not necessarily RTD-maximum. We further study RTD-maximal

3In this paper, we restrict ourselves to finite instance spaces.
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classes—classes whose RTD increases if any new concept is added to them. Such classes are not necessarily

RTD-maximum.

In studying RTD-maximum and RTD-maximal classes, we discover some new interesting properties of

VCD-maximal classes. In particular, we provide bounds on the size of VCD-maximal classes, shown in the

appendix.

This paper is an extension of a conference paper (Samei et al., 2012).

2. Preliminaries

Let X be a finite set, called instance space. Elements of X are called instances. A concept on X is a

subset of X. Each concept c is identified with a function c(x) defined as follows: c(x) = 1 if x ∈ c and

c(x) = 0 if x /∈ c. For ` ∈ {0, 1}, ¯̀ is defined as ¯̀= 1− `.

A concept class C on X is a set of concepts on X, that is, C ⊆ 2X . C denotes the complement of C. For

Y ⊆ X, let C|Y denote the restriction of C to Y , that is, C|Y = {c∩Y : c ∈ C}. Similarly, c|Y means c∩Y .

To simplify notation, the restriction C|X\{x} will also be denoted as C − x, and c|X\{x} will be denoted as

c− x. The reduction of C to Y is defined as CY = {c ⊆ X \ Y : c ∪ c′ ∈ C for all c′ ⊆ Y }. In other words,

c ∈ CY if and only if all possible extensions of the concept c from X \ Y to X belong to C. If X1 and X2

are two disjoint instance spaces, C1 ⊆ 2X1 and C2 ⊆ 2X2 , then the direct product of C1 and C2 is a concept

class on X1 ∪ X2 defined as C1 × C2 = {c1 ∪ c2 : c1 ∈ C1 and c2 ∈ C2}. If the class C1 contains only a

single concept and C2 = 2X2 , then the class C1 ×C2 is called a cube. If |X2| = d, then such a cube is called

a d-dimensional cube (or d-cube for short).

A set S ⊆ X is shattered by the class C if C|S = 2S . The VC-dimension of a class C is defined

as VCD(C) = max{|S| : S is shattered by C} (Vapnik and Chervonenkis, 1971). Let Φd(m) =
∑d

i=0

(
m
i

)
.

Sauer’s lemma states that if VCD(C) = d, then |C| ≤ Φd(|X|) (Sauer, 1972; Shelah, 1972). Let VCD(C) = d;

then C is called VCD-maximum if |C| = Φd(|X|), that is, if the size of C matches the upper bound from

Sauer’s lemma (Welzl, 1987). A class is called maximal with respect to VC-dimension (or VCD-maximal)

if adding any new concept to the class increases its VC-dimension.

We will often use the formulas Φd(m) + Φm−d−1(m) = 2m and Φd(m) = Φd−1(m− 1) + Φd(m− 1).

The following proposition, proven by Rubinstein et al. (2009), follows immediately from the definition

of VC-dimension.

Proposition 1. (Rubinstein et al., 2009) Let C ⊆ 2X and |X| = m. Then VCD(C) ≤ d if and only if C

contains at least one (m− d− 1)-cube for each subset of (m− d− 1) instances, i.e., C
S 6= ∅ for every subset

S of m− d− 1 instances.

The one-inclusion graph G(C) of a concept class C is the labeled graph G with V (G) = C and E(G) =

{{c, c′} : |c4c′| = 1}, where c4c′ is the symmetric difference of c and c′. Every edge {c, c′} ∈ E(G) is
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labeled by the instance from c4c′. The degree of a concept c ∈ C in G(C), denoted by degC(c), is the

number of edges incident to c.

A labeled example is a pair (x, `), where x ∈ X and ` ∈ {0, 1}. For a set S of labeled examples, X(S)

denotes X(S) = {x ∈ X : (x, `) ∈ S for some `}. A set S of labeled examples is a teaching set for a concept

c in a class C, if c is the only concept from C which is consistent with S. The collection of all teaching sets

for c in C is denoted TS(c, C). For simplicity, if S is a teaching set for c with respect to C, we also call

X(S) a teaching set for c with respect to C, since the labels of examples from S are uniquely determined

by X(S) and c.

The teaching dimension of c in C is TD(c, C) = min{|S| : S ∈ TS(c, C)}. The teaching dimension of C

is defined as TD(C) = maxc∈C TD(c, C) (Goldman and Kearns, 1995; Shinohara and Miyano, 1991). We

will also refer to the minimal teaching dimension TDmin(C) = minc∈C TD(c, C).

The following definitions are based on previous literature on recursive teaching (Doliwa et al., 2010;

Zilles et al., 2011). A teaching plan for a concept class C is a sequence P = ((c1, S1), . . . , (cn, Sn)), where

C = {c1, . . . , cn} and Si ∈ TS(ci, {ci, . . . , cn}) for all i = 1, . . . , n. The order of the teaching plan P is

ord(P ) = maxi=1,...,n |Si|. The recursive teaching dimension of C is

RTD(C) = min{ord(P ) : P is a teaching plan for C}.

A teaching plan of C whose order equals RTD(C) is called an optimal teaching plan for C. For an optimal

teaching plan P = ((c1, S1), . . . , (cn, Sn)) for C, the set Si is called a recursive teaching set for ci in C with

respect to the plan P , and |Si| is called the recursive teaching dimension of ci in C with respect to the plan

P , denoted RTD(ci, C). The words “with respect to the plan P” may be omitted if there is no ambiguity.

At first glance, as a complexity notion for a model of learning from teachers, the RTD parameter seems

to require that the teacher and the learner first agree on a particular teaching plan before a target concept

can be taught. However, it was proven that there exists a surjective mapping from a family of sets of labeled

examples to a concept class C in a way that (i) teacher and learner can communicate successfully without

agreeing on a teaching plan and (ii) the size of a set of examples the teacher needs to present in order to

teach a concept c in C equals RTD(c, C); in particular, the largest set required for teaching any concept in

C has size RTD(C) (Zilles et al., 2011).

A teaching plan P = ((c1, S1), . . . , (cn, Sn)) is called repetition-free, if X(Si) 6= X(Sj) for all i, j ∈

{1, . . . , n} with i 6= j.

The RTD has the following properties (Doliwa et al., 2010; Zilles et al., 2011):

• RTD is monotonic, i.e, RTD(C ′) ≤ RTD(C) whenever C ′ ⊆ C.

• RTD equals the order of any canonical teaching plan, i.e., a teaching plan ((c1, S1), . . . , (cn, Sn)) with

|Si| = TDmin({ci, . . . , cn}) for all i = 1, . . . , n.
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• RTD(C) = maxC′⊆C TDmin(C ′).

In Tables 3, 4, 5, 6, and 8 the concepts are listed in the same order as they appear in a teaching plan

for the given class, and the recursive teaching sets are underlined.

3. Sauer’s bound with respect to the recursive teaching dimension

In this section we present our main result. A central theorem required in the proof of our main result is

an algebraic characterization of the teaching sets for a concept c in a concept class C, which is interesting in

its own right. We begin by introducing the algebraic setting needed for this characterization and for further

proofs throughout this paper.

Let X = {x1, . . . , xm} be a finite instance space, and let C = {c1, . . . , cn} be a concept class on X.

Consider a vector space Fn
2 of dimension n over the field F2 (i.e., the field consisting of 2 elements). For each

polynomial f(x1, . . . , xm) with variables from X and coefficients from F2, we define a vector f = (f1, . . . , fn)

from Fn
2 as follows

fi = f(ci(x1), . . . , ci(xm)) for i = 1, . . . , n.

Note that we use the same notation for a polynomial and a vector. We also associate each concept ci ∈ C

with the ith standard basis vector ci = (0, . . . , 1, . . . , 0) of Fn
2 . Again, we are using the same notation for a

concept and a vector. This should not cause confusion as the exact meaning of such notation will be clear

from the context. For instance, by “the vector x1x2” we mean the vector in Fn
2 that corresponds to the

polynomial x1x2. Similarly, an equality like c = f(x1, x2) should be interpreted as the equality between two

vectors, the one corresponding to the concept c and the one corresponding to the polynomial f(x1, x2).

To illustrate this notation, let us consider the concept class in Table 1. In our notation, c1 = (1, 0, 0, 0),

x1 x2 x3

c1 0 1 0

c2 1 0 1

c3 1 1 0

c4 0 0 1

Table 1: A concept class over three instances, consisting of four concepts.

c2 = (0, 1, 0, 0), c3 = (0, 0, 1, 0) and c4 = (0, 0, 0, 1). Moreover, x1 = (0, 1, 1, 0), x2 = (1, 0, 1, 0), x3 =

(0, 1, 0, 1), 0 = (0, 0, 0, 0) and 1 = (1, 1, 1, 1). So we have x2 + x3 = 1, x2x3 = 0, c2 = x1x3, c3 = x1x2,

c1 = c3 + x2 = x1x2 + x2, and c4 = c2 + x3 = x1x3 + x3.

The following theorem provides an algebraic description of teaching sets.
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Theorem 1. Let C = {c1, . . . , cn} ⊆ 2X . A set of instances {z1, . . . , zk} ⊆ X is a teaching set for a concept

ci if and only if ci = f(z1, . . . , zk) for some polynomial f over F2.

Proof. Suppose {z1, . . . , zk} is a teaching set for ci. It is not hard to see that in this case ci = p1 · · · pk,

where pt = zt if ci(zt) = 1 and pt = zt + 1 if ci(zt) = 0.

To prove the other implication, consider ci ∈ C and assume that ci = f(z1, . . . , zk) but {z1, . . . , zk} is not

a teaching set for ci. Hence there is another concept cj 6= ci from C which coincides with ci on {z1, . . . , zk},

that is, ci(zt) = cj(zt) for all t = 1, . . . , k. Thus the following equalities hold

fi = f(ci(z1), . . . , ci(zk)) = f(cj(z1), . . . , cj(zk)) = fj .

So, the ith and jth coordinates of the vector f(z1, . . . , zk) are equal. By definition, ci corresponds to the

standard basis vector (0, . . . , 1, . . . , 0) which has only one coordinate equal to 1, namely, the ith coordinate.

Since we assumed that ci = f(z1, . . . , zk) and showed that fi = fj , the vector f(z1, . . . , zk) must have at

least two coordinates equal to 1, namely, the ith and jth coordinates. This contradicts the assumption that

ci = f(z1, . . . , zk).

The next theorem is the main result of our paper. It provides a Sauer-type bound on the size of a concept

class with a given RTD.

Theorem 2. Let C ⊆ 2X and |X| = m. If RTD(C) = r then |C| ≤ Φr(m).

Proof. Let P r
m be the collection of monomials over F2 of the form xi1 · · ·xik , where 0 ≤ k ≤ r and 1 ≤ i1 <

· · · < ik ≤ m. In the case when k = 0 we let the corresponding monomial be equal to the constant 1. Note

that |P r
m| = Φr(m).

Let c1, c2, . . . , cn be all the concepts from C listed in the same order as they appear in some teaching

plan for C of order r. In particular, for every s = 1, . . . , n, we have TD(cs, {cs, . . . , cn}) ≤ r.

We will show that the vector space Fn
2 is spanned by the vectors that correspond to the monomials from

P r
m. The theorem then follows from a well-known linear algebra fact that the size of a spanning set cannot

be smaller than the dimension of the vector space.

We will show by induction that each cs lies in the span of P r
m. Since TD(c1, C) ≤ r, by Theorem 1, c1 is

equal to a polynomial of the form pi1 · · · pik for some k ≤ r, where each pt is equal to xt or xt + 1. It is not

hard to see that the product pi1 · · · pik lies in the span of P r
m, e.g., (x1 + 1)(x2 + 1) = x1x2 +x1 +x2 + 1, etc.

Now suppose that c1, . . . , cs are in the span of P r
m. Let Fs,0

2 be the subspace of Fn
2 consisting of the

vectors whose last n − s coordinates are zeros. Similarly, let F0,n−s
2 be the subspace of Fn

2 consisting of

the vectors whose first s coordinates are zeros. Also, let (v)s,0 and (v)0,n−s be the projections of a vector

v ∈ Fn
2 to the subspaces Fs,0

2 and F0,n−s
2 , respectively. In particular, we have v = (v)s,0 + (v)0,n−s.

Since TD(cs+1, {cs+1, . . . , cn}) ≤ r, applying Theorem 1 to {cs+1, . . . , cn} and cs+1 yields that (cs+1)0,n−s =

(pi1 · · · pik)0,n−s for some k ≤ r and some i1, · · · , ik, where each pt is equal to xt or xt + 1. In other words,
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(cs+1− pi1 · · · pik)0,n−s = 0, which means that cs+1− pi1 · · · pik belongs to the subspace Fs,0
2 . As before, the

product pi1 · · · pik lies in the span of P r
m. Moreover, by the induction hypothesis, the vectors c1, . . . , cs are

in the span of P r
m, and hence the subspace Fs,0

2 is contained in the span of P r
m. Hence cs+1 lies in the span

of P r
m.

Remark. The main ingredient of the proof of Theorem 2 is that if RTD(C) = r, then the monomials

from P r
m span the vector space F

|C|
2 . This idea was used previously by Smolensky (1997) to prove Sauer’s

bound for VCD. Namely, he showed that if VCD(C) = d, then the monomials from P d
m span F

|C|
2 . However,

the technique we used to prove that P r
m spans F

|C|
2 is different from the one used in Smolensky’s argument.

In particular, our technique is based on algebraic characterization of teaching sets provided in Theorem 1.

To see the difference, one can compare the proof of Theorem 2 with the proof of Lemma 1 in Section 6 which

is based on Smolensky’s original idea.

The above result suggests that the notions of RTD and VCD are related, at least for certain types of

concept classes—an observation that is in line with the recent results proven by Doliwa et al. (2010).

4. RTD-maximum classes

The Sauer-type bound in Theorem 2 is tight for any r and m, in particular, it is met by all VCD-maximum

classes of VC-dimension r, as we will see in Proposition 2. This suggests the following definition.

Definition 1. Let C ⊆ 2X , |X| = m, and RTD(C) = r. C is called RTD-maximum if |C| = Φr(m), and C

is called RTD-maximal if RTD(C ∪ {c}) > r for any concept c /∈ C.

In Sections 4 and 5 we will prove various properties of RTD-maximum and RTD-maximal classes and

compare them with their analogs for VC-dimension. For convenience, the main results of these sections are

summarized in Table 2.

4.1. RTD-maximum classes versus VCD-maximum classes

This section deals with general properties of RTD-maximum classes, in particular, in comparison to the

properties that VCD-maximum classes possess. We will see that there are some similarities between them,

but also many differences between their structural properties.

We begin with some simple observations relating RTD-maximum classes to VCD-maximum classes.

Proposition 2. (i) Every VCD-maximum class C is also RTD-maximum with RTD(C) = VCD(C).

(ii) There is a class C for which both C and C are RTD-maximum, but neither C nor C is VCD-

maximum. In particular, there are RTD-maximum classes that are not VCD-maximum.
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Property K = VCD K = RTD

C is K-maximum ⇒ C|X′ is K-maximum Yes No (Prop. 4)

C is K-maximum ⇒ C is K-maximum Yes Yes, if K(C) = 1

No, in general

(Prop. 5 and 6)

C is K-maximum ⇒ K(C) + K(C) = |X| − 1 Yes Yes, if K(C) = 1

No, in general

(Prop. 6 and Table 5)

K(C) + K(C) = |X| − 1 ⇒ C is K-maximum Yes Yes (Prop. 7)

C is K-maximum ⇒ C is shortest-path closed Yes (Thm. 3) No (Prop. 8)

C is K-maximum and K(C) = |X| − 2 ⇒ Yes (Prop. 14) No (Prop. 15)

|{c ∈ C : TD(c, C) = |X| − 2}| ≥ |X| − 1

C is K-maximum ⇒ C has a sample compression Yes No (Corollary 1)

scheme of size K(C)

C is K-maximal ⇒ C shatters all subsets of size K(C) No (Table 7) Yes (Prop. 16)

K(C) = 1 and C is K-maximal ⇒ C is K-maximum Yes Yes (Prop. 17)

There is a K-maximal class that is not K-maximum Yes Yes (Prop. 18)

Table 2: Summary of the main results of Sections 4 and 5, in the context of known results on VCD.

Proof. (i) For every VCD-maximum class C, RTD(C) = VCD(C) (Doliwa et al., 2010). It follows from

Theorem 2 and Definition 1 that C is RTD-maximum.

(ii) C1 in Table 3 is RTD-maximum with RTD(C1) = 2, and C1 is RTD-maximum with RTD(C1) = 1.

As VCD(C1) = 3 and VCD(C1) = 2, neither C1 nor C1 is VCD-maximum.

Since for RTD-maximum classes the VC-dimension can exceed the recursive teaching dimension, it is

natural to ask how large the difference between these two parameters can be. The following proposition

answers this question.

Proposition 3. For any two integers i and d with 1 ≤ i ≤ d, there is an RTD-maximum class C such that

RTD(C) = i and VCD(C) ≥ d.

Proof. Fix positive integers d and i with 1 ≤ i ≤ d. Choose any integer m such that
(
m
i

)
≥ 2d. Let C ′ be a

concept class on X = Y ∪Z with |Y | = m and |Z| = d such that C ′ contains all subsets of X of size at most

i. So, |C ′| = Φi(|X|) and for any concept c′ ∈ C ′, |c′| = |{x ∈ X : c′(x) = 1}| ≤ i. Note that RTD(C ′) = i;

in particular, there is a teaching plan ((c′1, S1), . . . , (c′|C′|, S|C′|)) of order i for C ′ for which the concepts c′1,

c′2, . . . , c′2d are of size i and are subsets of Y .
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ci ∈ C1 x1 x2 x3 x4

c1 1 1 1 1

c2 0 0 1 1

c3 0 1 0 1

c4 0 1 1 0

c5 1 0 1 0

c6 1 1 0 0

c7 0 0 0 1

c8 0 0 1 0

c9 0 1 0 0

c10 1 0 0 0

c11 0 0 0 0

ci ∈ C1 x1 x2 x3 x4

c1 0 1 1 1

c2 1 1 1 0

c3 1 0 1 1

c4 1 1 0 1

c5 1 0 0 1

Table 3: C1 and C1 are RTD-maximum but neither C1 ({x1, x2, x3} is shattered) nor C1 ({x2, x3} is shattered) is VCD-

maximum. Recursive teaching sets are underlined.

ci ∈ C2 x1 x2 x3 x4

c1 1 0 0 0

c2 0 1 1 1

c3 0 1 0 0

c4 0 0 1 0

c5 0 0 0 0

Table 4: C2 is RTD-maximum but C2 − x4 is not. Recursive teaching sets are underlined.

We construct an RTD-maximum concept class C with VCD(C) = d and RTD(C) = i in the following

way. First, we fix an order over all subsets of Z. Then, we define new concepts ck over X, for 1 ≤ k ≤ |C ′|,

as follows.

• For 1 ≤ k ≤ 2d, let ck = c′k ∪ bk where bk is the kth subset of Z in the given order.

• For k > 2d, let ck = c′k.

Let C = {c1, . . . , c|C′|}. In particular, |C| = |C ′| = Φi(|X|). On the one hand, ((c1, S1), . . . , (c|C′|, S|C′|)) is

a teaching plan of order i for C and thus RTD(C) ≤ i. On the other hand, since |C| = Φi(|X|), Theorem 2

implies RTD(C) ≥ i. Hence, we obtain RTD(C) = i and C is RTD-maximum. Furthermore, VCD(C) ≥ d

since C shatters the set Z of size d.

An interesting consequence of Proposition 3 is that, even for RTD-maximum classes, the recursive teach-

ing dimension is not an upper bound on the smallest possible size of a sample compression scheme, as we

will show below. A labeled sample compression scheme of size k for a concept class C over X (Littlestone

and Warmuth, 1986; Floyd and Warmuth, 1995) consists of two mappings f and g which map labeled sets

of examples to labeled sets of examples. f maps every set S that is consistent with some concept in C to a
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subset S′ ⊆ S of size at most k. Given such a set S′, g returns a set S′′ ⊇ S containing exactly one labeled

example for each instance in X; in particular, all examples originally presented to f must be contained in

the set output by g. In an unlabeled compression scheme, the sets output by f and input to g are just sets

of instances without any labels.

Littlestone and Warmuth (1986) showed that sample compression schemes can be interpreted as PAC-

learning algorithms (Valiant, 1984) and that their size yields bounds on the sample complexity of PAC-

learning for a specified concept class. These bounds would improve on the best known ones for PAC-learning

if it could be shown that the smallest possible size of a sample compression scheme for a class C is linear in

the VC-dimension of C. It was conjectured that such a linear relationship exists, but only in a few special

cases has the conjecture been proven so far. Most notably, any VCD-maximum class C possesses a (labeled

and an unlabeled) sample compression scheme of size VCD(C) (Floyd and Warmuth, 1995; Kuzmin and

Warmuth, 2007).

Doliwa et al. (2010) revealed a strong relationship between sample compression schemes and recursive

teaching sets, in particular for the case of VCD-maximum classes. In proving that RTD and VCD coin-

cide on VCD-maximum classes, they showed a 1-1 correspondence between recursive teaching sets and the

compression sets f(S) used in unlabeled sample compression schemes for those classes. In particular, every

VCD-maximum class C has a sample compression scheme of size RTD(C). This result cannot be generalized

to RTD-maximum classes.

Corollary 1. There is an RTD-maximum class C for which no (labeled or unlabeled) sample compression

scheme of size RTD(C) exists.

Proof. Floyd and Warmuth (1995) showed that no concept class of VC-dimension d has a sample compression

scheme of size at most d/5. By Proposition 3, for any d ≥ 5, there are RTD-maximum classes C with

VCD(C) = d for which RTD(C) ≤ d/5; these cannot have sample compression schemes of size RTD(C).

Due to Welzl (1987), we know that restricting a VCD-maximum class to a subset of its instance space

yields another VCD-maximum class. But this property does not in general hold for RTD-maximum classes,

as we show next.

Proposition 4. There is an RTD-maximum class which has a restriction that is not RTD-maximum.

Furthermore, there is an RTD-maximum class C that has an RTD-maximum restriction C ′ such that

RTD(C ′) > RTD(C).

Proof. Consider C2 in Table 4. It is easy to see that C2 is RTD-maximum and RTD(C2) = 1. However,

RTD(C2 − x4) = 2 and C2 − x4 is not RTD-maximum. Furthermore, consider the RTD-maximum class C1

in Table 3. Clearly, C1 − x4 is RTD-maximum and RTD(C1) = 2 < RTD(C1 − x4) = 3.
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As mentioned in Section 1, the complement of any VCD-maximum class is VCD-maximum. But RTD-

maximum classes do not possess this property.

Proposition 5. There is an RTD-maximum class whose complement is not RTD-maximum.

Proof. Consider the RTD-maximum class C with RTD(C) = 3 in Table 5. C is not RTD-maximum because

RTD(C) = 2 and 6 < Φ2(5).

ci ∈ C x1 x2 x3 x4 x5

c1 1 1 1 1 1

c2 1 1 0 1 1

c3 1 1 0 1 0

c4 1 1 0 0 1

c5 0 1 1 1 1

c6 1 0 1 1 1

c7 0 0 1 1 1

c8 1 1 0 0 0

c9 1 0 1 0 1

c10 1 0 0 0 1

c11 0 1 1 1 0

c12 0 1 0 1 0

c13 0 1 1 0 1

ci ∈ C x1 x2 x3 x4 x5

c14 0 1 0 0 1

c15 1 0 1 1 0

c16 1 0 0 1 0

c17 0 1 1 0 0

c18 0 1 0 0 0

c19 0 0 1 1 0

c20 0 0 0 1 0

c21 1 0 1 0 0

c22 1 0 0 0 0

c23 0 0 1 0 1

c24 0 0 1 0 0

c25 0 0 0 0 1

c26 0 0 0 0 0

ci ∈ C x1 x2 x3 x4 x5

c1 0 0 0 1 1

c2 0 1 0 1 1

c3 1 0 0 1 1

c4 1 1 1 0 1

c5 1 1 1 0 0

c6 1 1 1 1 0

Table 5: C is RTD-maximum but C is not. Recursive teaching sets are underlined.

By contrast with Proposition 5, we can show that the complement of an RTD-maximum class of RTD 1

is still RTD-maximum.

Proposition 6. Let C be an RTD-maximum class over X with |X| ≥ 2. If RTD(C) = 1, then C is

RTD-maximum and RTD(C) = |X| − 2.

Proof. For |X| = 2, it is easy to verify that the proposition is true. Suppose it is also true for |X| < m.

Now consider the case |X| = m > 2. Let c1 ∈ C with TD(c1, C) = 1. Without loss of generality, let

{(x1, 1)} be a teaching set for c1 in C. Then we can write C as a disjoint union of {c1} and {0}×C1, where
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C1 = (C \ {c1})− x1 is an RTD-maximum class with RTD(C1) = 1 on X \ {x1}. So, the complement of C

is equal to the disjoint union C = ({0} ×C1) ∪ ({1} ×C2), where C2 = 2X\{x1} \ {c1 − x1} is a class of size

2m−1 − 1 on X \ {x1}.

By the induction hypothesis, there is a teaching plan of order m − 3 for C1. Take such a plan and

extend every recursive teaching set S from this plan to S ∪ {(x1, 0)}. As a result, we obtain a teaching plan

for {0} × C1 of order m − 2, which we call P1. Note that C2 is a VCD-maximum class with VCD(C2) =

|X \ {x1}|− 1 = m− 2, and hence RTD(C2) = m− 2. Since RTD({1}×C2) = RTD(C2), there is a teaching

plan of order m− 2 for {1} × C2, which we call P2.

Every recursive teaching set from P1 contains (x1, 0), which distinguishes the concepts in {0} × C1

from those in {1} × C2. So, P1 and P2 can be merged into a teaching plan for C of order m − 2. Thus

RTD(C) ≤ m − 2. Furthermore, |C| = 2m − |C| = 2m − (m + 1) = Φm−2(m). By Theorem 2, we have

RTD(C) ≥ m− 2, and hence C is RTD-maximum.

The RTD-maximum class C in the proof of Proposition 5 fulfills RTD(C) + RTD(C) = |X|. In contrast

to this, note that a class C is VCD-maximum if and only if VCD(C) + VCD(C) = |X| − 1. Necessity of

the condition was proven by Rubinstein et al. (2009). Sufficiency is easy to see, as was pointed out by an

anonymous reviewer of a preliminary version of this paper (Samei et al., 2012): Suppose C with VCD(C) = d

is not VCD-maximum. Then |C| < Φd(|X|) and thus |C| > 2|X| − Φd(|X|) = Φ|X|−d−1(|X|), which implies

VCD(C) > |X| − d − 1. The same reasoning implies that the condition is sufficient as well when VCD is

replaced by RTD.

Proposition 7. For any C ⊆ 2X , if RTD(C) + RTD(C) = |X| − 1, then C is RTD-maximum.

Remark. The converse of Proposition 7 is false: Table 5 contains an RTD-maximum class C on 5

instances for which RTD(C) + RTD(C) = 3 + 2 > 5 − 1. However, a weaker statement is still true:

if C and C are both RTD maximum, then RTD(C) + RTD(C) = |X| − 1. Indeed, let RTD(C) = r.

Since C is RTD-maximum, |C| = Φr(|X|). Hence |C| = 2|X| − Φr(|X|) = Φ|X|−r−1(|X|). By Theorem 2,

RTD(C) ≥ |X|−r−1. If RTD(C) > |X|−r−1, then again Theorem 2 implies that C is not RTD-maximum.

So, RTD(C) = |X| − r − 1 and we obtain that RTD(C) + RTD(C) = |X| − 1.

Another difference between VCD-maximum classes and RTD-maximum classes is that the former are

always shortest-path closed (Kuzmin and Warmuth, 2007), while the latter are not. A class C is shortest-

path closed if any two concepts c, c′ ∈ C are Hamming-connected, i.e., there are pairwise distinct instances

x1, . . . , xk and c1, . . . , ck−1 ∈ C such that, with c0 = c and ck = c′, the concepts ci−1 and ci differ only in

xi, for 1 ≤ i ≤ k. In other words, there is a path in G(C) between c and c′, which is labeled by instances of

c4c′ and has a length of |c4c′|.

Proposition 8. There is an RTD-maximum class that is not shortest-path closed.
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Proof. The RTD-maximum class C1 in Table 3 is not shortest-path closed because the concept c11 has

Hamming distance at least 2 from any other concept in the class.

Note that shortest-path closedness is not the distinguishing property between RTD-maximum and VCD-

maximum classes.

Proposition 9. There is an RTD-maximum class that is shortest-path closed but not VCD-maximum.

Proof. The RTD-maximum class C in Table 6 is of RTD 2 and also shortest-path closed. However, the

VC-dimension of C is 3 which means that it is not VCD-maximum. This class was found by exhaustive

enumeration of all concept classes over instance spaces of size at most 5.

ci ∈ C x1 x2 x3 x4

c1 0 0 0 1

c2 0 0 1 0

c3 0 0 0 0

c4 0 1 0 0

c5 1 0 0 1

c6 1 0 1 0

c7 1 0 1 1

c8 1 1 0 0

c9 1 1 0 1

c10 1 1 1 0

c11 1 1 1 1

Table 6: C is RTD-maximum and shortest-path closed (found by computer experiments) but not VCD-maximum ({x2, x3, x4}

is shattered). Recursive teaching sets are underlined.

On the other hand, in the case when RTD is equal to 1 we have the following result.

Proposition 10. Let C be an RTD-maximum class with RTD(C) = 1. If C is shortest-path closed, then C

is VCD-maximum with VCD(C) = 1.

Proof. Let C ⊆ 2X be a shortest-path closed RTD-maximum class with RTD(C) = 1 and X = {x1, . . . , xm}.

It follows from the proof of Theorem 2 that the monomials {1, x1, . . . , xm} form a spanning set for F
|C|
2 .

Since |{1, x1, . . . , xm}| = m + 1 = |C|, these monomials form a basis. In particular, we have xi 6= 0 and

xi 6= 1 for all i ∈ {1, . . . ,m}.

So for any i ∈ {1, . . . ,m}, there is a pair of concepts c1, c2 ∈ C such that c1(xi) = 1 and c2(xi) = 0.

Since C is shortest-path closed, c1 and c2 must be Hamming-connected. In particular, the one-inclusion

graph of C must have an edge with label xi. Hence we have that C{xi} 6= ∅ for any i ∈ {1, . . . ,m}. It

follows from Proposition 1 that VCD(C) ≤ m − 2. But |C| = 2m − |C| = 2m − Φ1(m) = Φm−2(m). So by
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Sauer’s lemma VCD(C) = m − 2 and C is VCD-maximum. Therefore, C itself is a VCD-maximum class

with VCD(C) = 1.

4.2. Teaching plans of RTD-maximum classes

In this section, we analyze the structure of teaching plans of RTD-maximum classes, which is mo-

tivated by the rich structure of teaching plans of VCD-maximum classes. For example, due to Doliwa

et al. (2010), we know that each VCD-maximum class C possesses a repetition-free teaching plan of order

RTD(C) = VCD(C), and the recursive teaching sets used in such repetition-free teaching plans immedi-

ately correspond to sample compression schemes whose size equals the VC-dimension. Further motivation

is that understanding the structure of teaching plans of RTD-maximum classes can help us to understand

the structure of these classes themselves.

While it remains open whether or not RTD-maximum classes always possess repetition-free teaching

plans, the results presented in this section provide useful insights into the structural properties of RTD-

maximum classes.

We begin by showing that, for any teaching plan of an RTD-maximum class C, all instance sets of size

RTD(C) are used as recursive teaching sets. This result is a consequence of the proof of Theorem 2.

Proposition 11. Let C ⊆ 2X be RTD-maximum and RTD(C) = r. Let X ′ ⊆ X be any subset of size r.

Then for any teaching plan P for C of order r, there is a concept c ∈ C and a recursive teaching set S for

c with respect to P , such that X(S) = X ′.

Proof. Let X ′ = {xi1 , . . . , xir}, and P be a teaching plan for C of order r such that c1, c2, . . . , cn are all

concepts from C listed in the same order as they appear in P . Assume that X ′ does not appear as a recursive

teaching set in the plan P . Then, in the proof of Theorem 2 we can always represent the concept cs+1 inside

the class {cs+1, . . . , cn} as a polynomial f(z1, . . . , zr) over F2 such that {z1, . . . , zr} 6= {xi1 , . . . , xir}. (This

follows from Theorem 1 and the fact that X ′ is not used as a recursive teaching set.) As a consequence,

we can span Fn
2 without using the monomial xi1 · · ·xir , which implies that |C| = dim(Fn

2 ) ≤ Φr(|X|) − 1.

Hence C is not RTD-maximum. This is a contradiction.

Another consequence of Theorem 2 is that, for an RTD-maximum class, teaching sets of size 1 cannot

be used too early in any teaching plan.

Proposition 12. Let C ⊆ 2X be RTD-maximum, |X| = m, and RTD(C) = r. For an arbitrary teaching

plan for C, let (c1, c2, . . . , cn) be the sequence of all concepts of C listed in the plan. Then for any positive

integer i < Φr−1(m− 1), we have TD(ci, {ci, . . . , cn}) > 1.

Proof. Assume that TD(ci, {ci, . . . , cn}) = 1 for some i < Φr−1(m − 1). Let (x, `) ∈ TS(ci, {ci, . . . , cn})

for some x ∈ X and ` ∈ {0, 1}. Then we have c(x) = ¯̀ for any c ∈ {ci+1, . . . , cn}. So, |{ci+1, . . . , cn}| =
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|{ci+1, . . . , cn} − x|. Consequently,

|C| = |{c1, . . . , ci}|+ |{ci+1, . . . , cn}| = i + |{ci+1, . . . , cn}|

= i + |{ci+1, . . . , cn} − x| ≤ i + Φr(m− 1) (by Theorem 2)

< Φr−1(m− 1) + Φr(m− 1) = Φr(m).

Thus C is not RTD-maximum. This is a contradiction.

Note that Proposition 12 is tight in the sense that there is an RTD-maximum class of RTD r that possesses

an optimal teaching plan in which the concept at position i = Φr−1(m − 1) has a recursive teaching set

of size 1. In particular, the VCD-maximum class that contains all concepts of size at most r fulfills this

property. The witnessing optimal teaching plan begins with all concepts of size r that contain an arbitrary

but fixed instance x, followed by those of size r− 1 that contain x and so on. The concept c containing only

x occurs at position
(
m−1
r−1
)

+ · · · +
(
m−1
1

)
+ 1 = Φr−1(m − 1) in this plan. After that point, no concept in

the plan contains x, and hence {(x, 1)} is a recursive teaching set of size one for c in the chosen plan.

As a generalization of Proposition 12, we observe that, in any teaching plan for any RTD-maximum

class C, recursive teaching sets S of size less than RTD(C) can only be used after all instance sets X ′ ⊃ X(S)

of size RTD(C) have been used as recursive teaching sets.

Proposition 13. Let C ⊆ 2X be RTD-maximum with RTD(C) = r and let P = ((c1, S1), . . . , (cn, Sn)) be

a teaching plan for C. Suppose there is some i ∈ {1, . . . , n} such that |X(Si)| ≤ r − 1. Then for all sets X ′

with X(Si) ⊂ X ′ ⊆ X and |X ′| = r, there is an index j ∈ {1, . . . , i− 1} such that X(Sj) = X ′.

Proof. Let X = {x1, . . . , xm}. Without loss of generality, assume that there is an index i such that X(Si) =

{x1, . . . , xt}, where t ≤ r − 1, but for every j < i, X(Sj) 6= {x1, . . . , xt, xt+1, . . . , xr}. We will use the same

notation as in the proof of Theorem 2. In particular, P r
m is the collection of monomials over F2 of the form

xi1 · · ·xik , where 0 ≤ k ≤ r and 1 ≤ i1 < · · · < ik ≤ m.

Note that P r
m is a basis for F

|C|
2 because P r

m spans F
|C|
2 and |C| = Φr(m) = |P r

m|. Thus every concept

c ∈ C can be expressed as a linear combination of monomials from P r
m in a unique way. We now express

ci as a linear combination of monomials from P r
m in two different ways: one will contain the monomial

x1x2 · · ·xr and the other will not.

Since X(Si) = {x1, . . . , xt}, by Theorem 1,

(ci)0,n−i = x1x2 · · ·xt + L(x1, . . . , xt),

where L(x1, . . . , xt) is a linear combination of monomials of degree less than t with the variables among

x1, . . . , xt. In particular, the linear combination for (ci)0,n−i does not contain the monomial x1x2 · · ·xr.

Note that ci is equal to (ci)0,n−i plus a linear combination of c1, . . . , ci−1. By assumption, none of the
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c1, . . . , ci−1 contains the monomial x1x2 · · ·xr in its expression as a linear combination of P r
m. Therefore,

ci can be expressed as a linear combination of monomials from P r
m in which the monomial x1x2 · · ·xr does

not occur.

Notice that any superset of X(Si), and in particular the set {x1, . . . , xr}, is also a recursive teaching set

for ci according to plan P . Again, by Theorem 1, we can write

(ci)0,n−i = x1x2 · · ·xr + L(x1, . . . , xr),

where L(x1, . . . , xr) is a linear combination of monomials of degree less than r with the variables among

x1, . . . , xr. Hence the linear combination for (ci)0,n−i contains the monomial x1x2 · · ·xr. As before, ci is

equal to (ci)0,n−i plus a linear combination of c1, . . . , ci−1 and, by assumption, none of the c1, . . . , ci−1

contains the monomial x1x2 · · ·xr in its expression as a linear combination of P r
m. So, c1, . . . , ci−1 cannot

cancel out x1x2 · · ·xr from (ci)0,n−i. Therefore, ci can be expressed as a linear combination of monomials

from P r
m which contains x1x2 · · ·xr.

Thus we have expressed ci as a linear combination of monomials from P r
m in two different ways. This

contradicts the fact that P r
m is a basis.

An interesting question is how many concepts in an RTD-maximum class C have the smallest teaching

dimension with respect to C. All of these concepts would be safe choices to start the construction of a

canonical teaching plan, which is always an optimal plan. Kuzmin and Warmuth (2007) conjectured that

VCD-maximum classes of VC-dimension d always have at least d+ 1 concepts of teaching dimension d. The

latter is provably the smallest teaching dimension a concept in such a class can have.4 We cannot offer a

proof of Kuzmin and Warmuth’s conjecture in the general case, but it turns out to be true for the case of

d = |X| − 2. Since VCD-maximum classes are also RTD-maximum, this result is relevant to this section.

Proposition 14. Let C ⊆ 2X with |X| = m. Suppose C is VCD-maximum with VCD(C) = m− 2. Then

there are at least m−1 concepts c ∈ C with TD(c, C) = m−2 (and no concepts c ∈ C with TD(c, C) < m−2).

Proof. Let C ⊆ 2X be a VCD-maximum class with VCD(C) = m − 2 and let C be the complement of C.

Then C is a VCD-maximum class with VCD(C) = 1. According to Dudley (1985), the latter implies that

G(C) is a tree.

We now show that for any pair of adjacent edges in G(C), there is a concept c ∈ C with TD(c, C) = m−2.

Let cz1,z2 be a concept in G(C) which has two adjacent edges labeled with z1 and z2. Let Bz1,z2 be the

unique 2-dimensional cube that contains cz1,z2 and the edges labeled with z1 and z2. By the choice of cz1,z2 ,

the cube Bz1,z2 contains three concepts from C and one concept from C, which we denote cz1,z2 . Note that

4This follows, for example, from Doliwa et al.’s proof showing that RTD and VCD coincide for VCD-maximum classes (Doliwa

et al., 2010).
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X − {z1, z2} is a teaching set for cz1,z2 in C since the other three concepts that are consistent with cz1,z2

on X − {z1, z2} belong to the cube Bz1,z2 and thus to C. Hence TD(c, C) ≤ m − 2. On the other hand,

TD(c, C) cannot be strictly smaller than m− 2 because C is a VCD-maximum class. So, TD(c, C) = m− 2.

Note that if {z1, z2} and {y1, y2} are two different pairs of adjacent edges in G(C), then cz1,z2 6= cy1,y2
. To

see this, suppose cz1,z2 = cy1,y2 . We consider two cases: {z1, z2} ∩ {y1, y2} = ∅ and |{z1, z2} ∩ {y1, y2}| = 1.

One can see that in the first case the concepts cz1,z2 and cy1,y2
from C are not Hamming-connected, a

contradiction to the fact that C is shortest-path closed. In the second case, say for z2 = y1, it is not hard

to see that there are two edges in G(C) labeled with z2 = y1, which is also impossible.

To conclude the proof, we note that since G(C) is a tree with m + 1 nodes, it has at least m − 1 pairs

of adjacent edges.5

Proposition 14 cannot be generalized to all RTD-maximum classes.

Proposition 15. There is an RTD-maximum class C ⊆ 2X with |X| = m and RTD(C) = m− 2 for which

the number of concepts c ∈ C with TD(c, C) = m− 2 is less than m− 1.

Proof. Consider again the class C1 in Table 3. It is RTD-maximum, where m = 4 and RTD(C1) = 2 = m−2.

However, there is only one concept in this class whose teaching dimension is m−2, namely, the concept c1.

The latter result also implies that removing all concepts of teaching dimension r from an RTD-maximum

class C with RTD(C) = r does not necessarily yield another RTD-maximum class. Consequently, there is

no straightforward nested structure of RTD-maximum classes, as we find for example for VCD-maximum

classes with respect to the restriction of the instance set.

5. RTD-maximal classes

In this section we present some properties of RTD-maximal classes. We first show that an RTD-maximal

class shatters each subset of the instance space whose size is equal to RTD.

Proposition 16. Let C ⊆ 2X be RTD-maximal with RTD(C) = r. Then, for any subset X ′ ⊆ X with

|X ′| = r, C shatters X ′.

Proof. Assume that X ′ is not shattered by C. Then |C|X′ | < 2|X
′| and we can add a new concept cnew to

C such that cnew|X′ /∈ C|X′ . Thus, TD(cnew, C ∪{cnew}) ≤ r. Since RTD(C) = r, C has a teaching plan of

order r. So, C ∪ {cnew} also has a teaching plan of order r, which starts with cnew and then continues with

any teaching plan for C of order r. Therefore, RTD(C ∪ {cnew}) ≤ r and C is not RTD-maximal.

5In fact, the number of pairs of adjacent edges in G(C) is exactly m− 1 if and only if G(C) is a path.
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Note that Proposition 16 is not true in general for VCD-maximal classes. Table 7 contains an example

of a VCD-maximal class, found by computer experiments, that does not shatter all subsets of the instance

space whose size is equal to the VC-dimension.

ci ∈ C x1 x2 x3 x4 x5

c1 0 1 0 1 1

c2 0 1 1 0 1

c3 0 1 1 1 0

c4 1 0 0 0 0

c5 1 0 0 0 1

c6 1 0 0 1 0

c7 1 0 1 0 0

c8 1 1 0 0 0

c9 1 1 0 0 1

c10 1 1 0 1 0

c11 1 1 0 1 1

c12 1 1 1 0 0

c13 1 1 1 0 1

c14 1 1 1 1 0

Table 7: VCD-maximal class of VCD 2 that does not shatter the subset {x1, x2} (found by computer experiments).

As a corollary of Proposition 16 we can show that, for any RTD-maximal class, the minimal teaching

dimension and the recursive teaching dimension coincide.

Corollary 2. For any RTD-maximal class C ⊆ 2X , TDmin(C) = RTD(C).

Proof. First, note that TDmin(C) ≤ RTD(C). Now assume TDmin(C) < RTD(C). In this case, there is

a concept c ∈ C for which {xi1 , . . . , xik} is a teaching set, for some k < RTD(C). Consider any subset

X ′ ⊆ X such that |X ′| = RTD(C) and {xi1 , . . . , xik} ⊂ X ′. Then C does not shatter X ′, since otherwise

there would exist at least one more concept c′ ∈ C with c′|{xi1 ,...,xik
} = c|{xi1 ,...,xik

}. This is impossible

because {xi1 , . . . , xik} is a teaching set for c in C. Hence, by Proposition 16, C cannot be RTD-maximal.

This is a contradiction.

It is not hard to see that VCD-maximal classes of VC-dimension 1 are VCD-maximum (Welzl and

Woeginger, 1987). We now show that the same holds for RTD-maximal classes.

Proposition 17. Let C ⊆ 2X be RTD-maximal. If RTD(C) = 1, then C is RTD-maximum.

Proof. For |X| = 1 there is only one RTD-maximal class with two concepts which is clearly RTD-maximum.

Suppose that the proposition holds when |X| = m. Now we consider the case that |X| = m + 1 and C is

an RTD-maximal class on X with RTD(C) = 1. Since RTD(C) = 1, there is a concept c ∈ C such that
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TD(c, C) = 1. Let (x, `) be a teaching set for c. Then, for any c′ ∈ C \{c}, (x, `) /∈ c′ or equivalently,

(x, ¯̀) ∈ c′, which implies that |C\{c}| = |(C\{c}) − x|. Clearly, (C\{c}) − x is RTD-maximal, otherwise

C would not be RTD-maximal. So, by the induction hypothesis, |(C \{c}) − x| = Φ1(m). Therefore,

|C| = Φ1(m) + 1 = Φ1(m + 1) and C is RTD-maximum.

Surprisingly, not all RTD-maximal classes are RTD-maximum.

Proposition 18. There is an RTD-maximal class that is not RTD-maximum.

Proof. Consider the RTD-maximal class C in Table 8. Since RTD(C) = 2 and |C| = 13 < Φ2(5), C is not

RTD-maximum. This class was found by exhaustive enumeration of all concept classes over instance spaces

of size at most 5.

ci ∈ C x1 x2 x3 x4 x5

c1 0 0 1 1 1

c2 1 1 1 1 1

c3 0 1 0 1 1

c4 0 1 0 1 0

c5 0 1 1 0 1

c6 0 1 1 0 0

c7 0 1 1 1 0

c8 1 0 0 0 1

c9 1 0 1 0 1

c10 1 0 0 0 0

c11 1 0 0 1 0

c12 1 0 1 0 0

c13 1 0 1 1 0

Table 8: C is RTD-maximal but not RTD-maximum (the class was found by computer experiments). Recursive teaching sets

are underlined.

6. Shortest-path closedness of VCD-maximum classes and of special VCD-maximal classes

In this section, we give an example to show how the algebraic technique that is applied to obtain our main

result can also yield more elegant and insightful proofs for already known results. Kuzmin and Warmuth

(2007) showed that VCD-maximum classes are shortest-path closed, but algebraic methods provide an

interesting alternative proof.

We will further prove a new result, showing that even some of the smallest possible VCD-maximal classes

can be shortest-path closed.
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For Z ⊆ X = {x1, . . . , xm} and t ≤ m, let P t
m(Z) be the collection of monomials over F2 of the form

xi1 · · ·xik such that 0 ≤ k ≤ t, 1 ≤ i1 < · · · < ik ≤ m and {xi1 , . . . , xik} ⊆ Z.

Lemma 1. Let |X| = m, C ⊆ 2X , and VCD(C) = d. A set of instances Z ⊆ X is a teaching set for c ∈ C

if and only if c is in the span of P d
m(Z).

Proof. The main idea of this proof is from Smolensky (1997). Suppose that Z ⊆ X is a teaching set for

c ∈ C. Then, by Theorem 1, c = f for some polynomial f over F2 whose variables are in the set Z. Each

such polynomial is equal to a linear combination of monomials from P t
m(Z), where t = |Z|. For instance,

(x1 + 1)(x2 + 1)x3 = x1x2x3 + x1x3 + x2x3 + x3, etc.

We show that, for every t ≤ m and Z ⊆ X, the monomials from P t
m(Z) are in the span of P d

m(Z). This

in turn implies that f is in the span of P d
m(Z).

Like Smolensky (1997), we use induction on t. If t ≤ d, there is nothing to prove. Suppose that t > d and

every monomial from P t−1
m (Z) is in the span of P d

m(Z). Consider a monomial xi1 · · ·xit from P t
m(Z). Since

t > d, the set {xi1 , . . . , xit} is not shattered by C. Let (a1, . . . , at) be a concept that is not in C|{xi1
,...,xit}

and consider a polynomial p(xi1 , . . . , xit) = (xi1 + a1 + 1)(xi2 + a2 + 1) · · · (xit + at + 1).

As a vector in F
|C|
2 , p has zero coordinates because p(c(xi1), . . . , c(xit)) = 0 for all c ∈ C as at least one

of the factors of p will be zero. Hence p = 0 and xi1 · · ·xit can be expressed as a linear combination of

monomials of smaller degree with coefficients from {xi1 , . . . , xit} ⊆ Z, that is, the ones from P t−1
m (Z). To

see this, consider, e.g., (x1 + 1)(x2 + 1)x3 = 0; then we have x1x2x3 = x1x3 + x2x3 + x3. By the induction

hypothesis, P t−1
m (Z) is in the span of P d

m(Z), and hence xi1 · · ·xit is in the span of P d
m(Z). So P t

m(Z) is in

the span of P d
m(Z).

The implication in the other direction follows from Theorem 1.

With the help of this lemma, we now provide an alternative proof for the shortest-path closedness of

VCD-maximum classes.

Theorem 3. (Kuzmin and Warmuth, 2007) If C is a VCD-maximum class, then C is shortest-path closed.

Proof. Let C ⊆ 2X be a VCD-maximum class with |X| = m and VCD(C) = d, and let I(c) denote the

set {x ∈ X | there exists a c′ ∈ C such that c4c′ = {x}}. We first show that, for every c ∈ C, I(c)

is a teaching set for c. By Theorem 1, the monomials from P d
m(X) span the vector space F

|C|
2 . Since

|P d
m(X)| = Φd(m) = |C|, the set P d

m(X) is a basis for F
|C|
2 .

Let c ∈ C and let S ⊆ X be a minimal teaching set for c in the sense that no proper subset of S is a

teaching set for c. Suppose I(c) 6= S and let x ∈ S \ I(c). By Lemma 1, there is a linear combination f1

of monomials from P d
m(S) such that c = f1. Note that X \ {x} is also a teaching set for c, since otherwise

x ∈ I(c). Thus, there is a linear combination f2 of monomials from P d
m(X \ {x}) with c = f2. Since P d

m(X)

is a basis for F
|C|
2 , we have f1 = f2. As f2 does not depend on x, f1 does not depend on x either. Thus f1
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depends only on variables from S \ {x}. By Lemma 1, S \ {x} is a teaching set for c, which contradicts the

minimality of S. Therefore S = I(c), and thus I(c) is a teaching set for c.

Finally, we prove that any two concepts c1 and c2 in C are Hamming-connected, by induction on |c14c2|.

For |c14c2| = 1 the proof is obvious. Suppose |c14c2| = n and any two concepts c, c′ with |c4c′| < n are

Hamming-connected. Since I(c1) is a teaching set for c1, it cannot be disjoint from c14c2. Hence there is an

x ∈ I(c1)∩ (c14c2). Let c′ be the concept from C such that c14c′ = {x}. Then |c′4c2| = n− 1 and by the

induction hypothesis c′ and c2 are Hamming-connected. Therefore, c1 and c2 are Hamming-connected.

Theorem 3 states that VCD-maximal classes of the largest possible size are shortest-path closed. Note

that, in general, VCD-maximal classes need not be shortest-path closed. In the remainder of this section, we

prove that some of the VCD-maximal classes of the smallest possible size also can be shortest-path closed.

First, we establish a non-trivial lower bound on the size of VCD-maximal classes.

Lemma 2. Let C ⊆ 2X be a VCD-maximal class over a set X with |X| = m. If VCD(C) = d, then

|C| ≥ 2m − 2m−d−1
(

m

d + 1

)
.

Equivalently, if VCD(C) = m− d− 1, then

|C| ≥ 2m − 2d
(
m

d

)
.

Proof. We prove the second inequality. Suppose VCD(C) = m − d − 1 and |C| < 2m − 2d
(
m
d

)
. In this

case, we have that |C| > 2d
(
m
d

)
. By Proposition 1, C must contain at least one d-cube for each subset of d

instances. Consider a union of d-cubes from C taking exactly one cube for each subset of instances of size d.

Then the size of this union will be at most 2d
(
m
d

)
. Therefore, C must contain at least one concept c that

does not belong to the above union of d-cubes. Hence, due to Proposition 1, we can add this concept c to

the class C without increasing its VC-dimension, which contradicts the fact that C is VCD-maximal.

We will use the next lemma to show that the lower bound in Lemma 2 can be met by a shortest-path

closed class, when both VCD and |X| are large.

Lemma 3. For every d and `, there is some m and a concept class C ⊆ 2X with |X| = m that satisfies the

following properties:

(i) |CS | = 1 for every subset S ⊆ X of size d, i.e., C contains exactly one d-cube for any subset of d

instances.

(ii) Each concept from C belongs to exactly one d-cube.

(iii) For any c, c′ ∈ C, if c and c′ belong to different d-cubes, then |c4c′| ≥ `.
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(iv) The complement of C is a VCD-maximal class of dimension m− d− 1.

Proof. Let k = max{`, 2} and X = {1, . . . , (2d+ k)t}, where t will be chosen later. Split the instance space

X into disjoint blocks of size 2d+k and let {c1, . . . , cN} be the concepts that are equal to all possible unions

of such blocks. Note that N = 2t and |ci4cj | ≥ 2d + k for i 6= j. To each subset S ⊆ X of size d, we assign

a concept cS from the above list such that cS 6= cS′ for S 6= S′. This can be done when t is chosen large

enough so that N = 2t is greater than
(
(2d+k)t

d

)
, the number of subsets of size d of the set X.

For each S ⊆ X of size d, define a d-cube C(S) based on cS , that is, C(S) = 2S × {cS |X\S}. Let the

class C be defined as

C =
⋃

S⊆X: |S|=d

C(S).

Note that for S 6= S′ and for any c ∈ C(S) and c′ ∈ C(S′), we have

|c4c′| ≥ |cS4cS′ | − (|S|+ |S′|) ≥ 2d + k − 2d = k ≥ `. (*)

This proves part (iii).

To show (i), suppose |CS | > 1 and let C ′ be another d-cube on the instances from S. Each concept from

C ′ must belong to some C(S′) for S′ 6= S. Since C ′ is a cube, there are two concepts c1, c2 ∈ C ′ such that

|c14c2| = 1 and c1 ∈ C(S1), c2 ∈ C(S2) for some S1 6= S2. But we showed in (*) that |c14c2| ≥ k ≥ 2.

This contradiction proves part (i).

So, C contains only the cubes of the form C(S) for S ⊆ X. Again, it follows from (*) that these cubes

are disjoint, which proves part (ii).

Consider C, the complement of C. By Proposition 1, we have VCD(C) ≤ m − d − 1. On the other

hand, if VCD(C) < m− d− 1 then, again by Proposition 1, C must contain a (d + 1)-cube, and hence two

d-cubes, which contradicts part (i). Thus VCD(C) = m− d− 1. To show that C is VCD-maximal, consider

any concept c /∈ C. We have c ∈ C, and removing c from C will destroy the d-cube to which c belongs to.

Hence by Proposition 1, VCD(C ∪ {c}) > m− d− 1. This completes the proof of part (iv).

Theorem 4. There are VCD-maximal classes of the smallest possible size that are shortest-path closed.

Namely, for any d there is some m > d and a shortest-path closed concept class C ⊆ 2X such that

• |X| = m and VCD(C) = m− d− 1,

• C is VCD-maximal, and

• there is no VCD-maximal concept class C ′ ⊆ 2X with VCD(C ′) = m− d− 1 and |C ′| < |C|.

The following lemma, proven by Doliwa et al. (2013), presents a sufficient condition for shortest-path

closedness of a concept class, formulated in terms of its one-inclusion graph.
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Lemma 4. (Doliwa et al., 2013) Let C ⊆ 2X be a concept class such that for every c ∈ C, degC(c) ≥ |X|−1.

Then C is shortest-path closed.

Proof of Theorem 4. Take any d and let C0 be the class constructed in Lemma 3 for this choice of d and

` = 3. Let C be the complement of C0. It follows from Lemma 3 part (iv) that C is a VCD-maximal class

with VCD(C) = m− d− 1. Since C0 consists of disjoint d-cubes, and there are 2d many of them, we have

|C0| = 2d
(
m
d

)
. Therefore, |C| = 2m− 2d

(
m
d

)
. By Lemma 2, there is no VCD-maximal concept class C ′ ⊆ 2X

with VCD(C ′) = m− d− 1 and |C ′| < |C|.

We now prove that C is shortest-path closed. By Lemma 4, it suffices to show that degC(c) ≥ |X| − 1

for any c ∈ C. Suppose there is some c ∈ C such that degC(c) ≤ |X|−2. Hence there are c1, c2 with c1 6= c2

such that |c4c1| = |c4c2| = 1 and c1, c2 /∈ C, that is, c1, c2 ∈ C0. Since |c14c2| = 2 < `, Lemma 3 part (iii)

implies that c1 and c2 cannot belong to two different d-cubes in C0. So, they are in the same d-cube. But

then c must be in the same d-cube as well, which is impossible because c ∈ C = C0.

7. Conclusions

Our analog of Sauer’s bound for RTD establishes a new connection between teaching complexity and

VC-dimension. Another main contribution besides obtaining this result is the successful application of

algebraic proof techniques. Such techniques have occasionally been used to obtain results relevant to com-

putational learning theory (see, e.g., the article by Smolensky (1997)), but our results suggest that the

research community might benefit from further exploring their applicability. For example, we presented an

elegant alternative proof of the fact that VCD-maximum classes are shortest-path closed. The algebraic

characterization of teaching sets provided in Theorem 1 is of potential use for future studies not only in the

context of the combinatorial problems we deal with in this paper.

Our results on RTD-maximum and RTD-maximal classes provide deep insights into structural properties

that affect the complexity of teaching a concept class. In particular, we investigated the characteristics of

teaching plans for RTD-maximum classes, which help to better understand such properties. Our study of the

structure of teaching plans leaves a number of open questions. For example, Doliwa et al. (2010) proved that

every VCD-maximum class possesses a repetition-free teaching plan, but it remains open whether the same

is true for RTD-maximum classes in general. It would also be interesting to find out whether every class with

a repetition-free teaching plan can be extended to an RTD-maximum class without increasing the RTD. If

the answer is ‘yes’, this would imply that any RTD-maximal class with a repetition-free teaching plan must

already be RTD-maximum. If the answer is ‘no’, this would immediately lead to the question under which

conditions on the repetition-free teaching plan of a class C one could conclude that C is contained in an

RTD-maximum class of the same RTD.
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The comparative study of RTD-maximum classes and VCD-maximum classes points out many essential

differences between these two notions. An open question remaining from this study concerns the gap between

Proposition 5 and Proposition 6. By Proposition 6, the complement of any RTD-maximum class C with

RTD(C) = 1 is still maximum, but by Proposition 5 this cannot be generalized to arbitrary values of RTD(C).

The counterexample we gave in the proof of Proposition 5 is a class C with RTD(C) = 3, but we could not

find a counterexample of a class whose RTD equals 2. Interestingly, an exhaustive enumeration of all concept

classes over instance spaces of size at most 5 showed that the class given in the proof of Proposition 5 is the

only RTD-maximum class over at most 5 instances whose complement is not RTD-maximum.

So far, we do not know much about “proper” RTD-maximal classes, i.e., classes that are RTD-maximal

but not RTD-maximum. Our exhaustive enumeration of all concept classes over at most 5 instances suggests

that they occur even less frequently than proper VCD-maximal classes. For |X| = 4, there exist 402 distinct

concept classes,6 2 of them being proper VCD-maximal classes and none of them being proper RTD-maximal

classes. For |X| = 5, there are 1,228,158 distinct concept classes, 55 of them being proper VCD-maximal,

and only 17 being proper RTD-maximal. We could not find any proper RTD-maximal classes that are

shortest-path closed.

By contrast, RTD-maximum classes occur much more frequently. For |X| = 4, we found 25 such classes;

9 of them are VCD-maximum. For |X| = 5, the contrast in the numbers is large: 14,204 classes are

RTD-maximum, but only 56 of them are VCD-maximum. Most RTD-maximum classes are not shortest-

path closed: over 4 instances, there is only 1 shortest-path closed RTD-maximum class that is not VCD-

maximum (see Table 6); over 5 instances, the corresponding number is 19. From a theoretical point of view,

it would be interesting to find structural properties that characterize those RTD-maximum classes that are

not VCD-maximum.

As a byproduct of our theoretical studies, we proved several new results on VCD-maximal classes,

presented in the Appendix. Altogether, our results might be helpful in solving the long-standing sample

compression conjecture (Floyd and Warmuth, 1995) and in establishing further connections between learning

from a teacher and learning from randomly chosen examples. In particular, we hope that methods from

algebra will turn out to be of further use in these contexts.
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Appendix: VCD-maximal classes

This appendix contains some new interesting properties of VCD-maximal classes. For instance, the next

theorem provides a way of constructing an infinite series of equal-sized VCD-maximal classes starting from

a given VCD-maximal class.

Theorem 5. Let C be a class of VC-dimension d on a set of m instances X = {x1, . . . , xm}.

(1) If C is a VCD-maximal class and for some instance x ∈ X we have |C − x| = |C|, then C + x is also

VCD-maximal, where

C + x = {c ∈ 2X∪{xm+1} : c ∩X ∈ C and c(xm+1) = c(x)}.

This process can be continued to obtain a series of VCD-maximal classes C +x, (C +x) +x, ((C +x) +

x) + x, etc.

(2) On the other hand, if |C − x| < |C|, then C + x is not a VCD-maximal class.

Proof. (1) Note that VCD(C) = VCD((C + x) − x) and VCD(C) = VCD(C + x). These equalities follow

from the fact that C is equivalent to (C + x)− x, and that if C + x shatters a set S, then S cannot contain

both x and xm+1.

Suppose C is VCD-maximal and |C − x| = |C| for some x ∈ X. Consider any c ∈ 2X∪{xm+1} such that

c /∈ C +x and let c−xm+1 = c∩X. We need to show that VCD(C +x∪{c}) > VCD(C +x). First, suppose

c− xm+1 /∈ C. Then, since C is VCD-maximal, VCD(C + x ∪ {c}) ≥ VCD(C ∪ {c− xm+1}) > VCD(C) =

VCD(C + x).

Now suppose c− xm+1 ∈ C. In this case c(x) 6= c(xm+1) since otherwise c ∈ C + x. Also note that the

concept c− x = c ∩ (X ∪ {xm+1} − x) does not belong to (C + x)− x. Indeed, suppose c− x ∈ (C + x)− x

and let c′ ∈ C be the image of c− x under the equivalence transformation from (C + x)− x to C. We then

have that C contains two concepts, namely c − xm+1 and c′, that differ only on x since (c − xm+1)(x) =

c(x) 6= c(xm+1) = (c − x)(xm+1) = c′(x). This contradicts the assumption that |C − x| = |C|. Therefore,

c−x /∈ (C+x)−x and we have that VCD(C+x∪{c}) ≥ VCD((C+x)−x∪{c−x}) > VCD((C+x)−x) =

VCD(C) = VCD(C + x). Hence C + x is a VCD-maximal class.

(2) If |C − x| < |C| then there are two concepts c1 and c2 in C that differ only in x. Consider a concept

c /∈ C + x defined as c = c1 ∪ {(xm+1, `)} where ` is chosen so that c(x) 6= c(xm+1). Since c coincides with

c1 on X, we have (C + x ∪ {c})− xm+1 = C. Furthermore, c coincides with the extension of c2 in C + x on

the instances from (X ∪{xm+1})−x. Hence (C +x∪{c})−x = (C +x)−x, which is, of course, equivalent

to C.
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Let VCD(C + x) = d and suppose that C + x ∪ {c} shatters a set S of size d + 1. Note that S

cannot contain both x and xm+1 since the restriction of C + x ∪ {c} to these two instances can contain

only one of the two concepts (0, 1) and (1, 0). If S does not contain xm+1, then we have VCD(C + x) =

VCD(C) = VCD((C + x ∪ {c}) − xm+1) ≥ d + 1. On the other hand, if S does not contain x, we have

VCD(C + x) = VCD((C + x) − x) = VCD((C + x ∪ {c}) − x) ≥ d + 1. These contradictions show that in

fact VCD(C + x ∪ {c}) = VCD(C + x), and hence C + x is not a VCD-maximal class.

As a corollary of Lemma 2 from Section 6, we obtain that for a VCD-maximal class C with VCD(C) =

|X| −O(1), the sum VCD(C) + VCD(C) is bounded by |X|+ O(log2 |X|).

Theorem 6. Let |X| = m. If C ⊆ 2X is a VCD-maximal class and VCD(C) = m− d, then

VCD(C) + VCD(C) ≤ m− 1 + (d− 1) log2 m.

Proof. Since C is VCD-maximal, we have, by Lemma 2, that |C| ≥ 2m − 2d−1
(

m
d−1
)
. Therefore, |C| ≤

2d−1
(

m
d−1
)

and hence VCD(C) ≤ log2 |C| ≤ d− 1 + log2

(
m

d−1
)
. Taking into account that

(
m

d−1
)
≤ md−1, we

obtain VCD(C) ≤ d− 1 + (d − 1) log2 m. Since VCD(C) = m − d, it follows that VCD(C) + VCD(C) ≤

m− 1 + (d− 1) log2 m.

Another property of VCD-maximal classes is that they are indecomposable in the sense that they cannot

be formed by a direct product of non-trivial smaller classes.

Theorem 7. Let C0 ⊆ 2X0 and C1 ⊆ 2X1 be nonempty concept classes with

(a) VCD(C0) > 0 or VCD(C1) > 0 and

(b) C0 × C1 6= 2X0∪X1 .

Then C0 × C1 is not a VCD-maximal class.

We will need to prove the following lemma first.

Lemma 5. Let C0 ⊆ 2X0 and C1 ⊆ 2X1 be nonempty concept classes and let c0 ∈ 2X0 and c1 ∈ 2X1 be

any two concepts with the property that for each i ∈ {0, 1}, if VCD(Ci) = 0 then VCD(C1−i ∪ {c1−i}) =

VCD(C1−i). Then VCD((C0 × C1) ∪ {c0c1}) = VCD(C0 × C1) = VCD(C0) + VCD(C1).

Proof. Let di = VCD(Ci), for i ∈ {0, 1}, and suppose that (C0×C1)∪ {c0c1} shatters a set S ⊆ X0 ∪X1 of

size d0 + d1 + 1. Let Si = S ∩Xi and assume, without loss of generality, that |S0| = d0 + 1 and |S1| = d1.

Therefore, VCD(C0 ∪ {c0}) = d0 + 1 > VCD(C0), and by the assumption we have that d1 > 0. So, on the

one hand, we have that (C0×C1)∪{c0c1} must contain at least 2d1 > 1 concepts that extend c0|S0 . But, on

the other hand, (C0 × C1) ∪ {c0c1} contains only one such concept, namely c0c1, since c0|S0
/∈ C0|S0

. This

contradiction proves the lemma.
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Proof of Theorem 7. If VCD(C0) > 0 and VCD(C1) > 0, then by Lemma 5 for any concept c /∈ C0 × C1

(which exists by our assumption), we have that VCD((C0 ×C1) ∪ {c}) = VCD(C0 ×C1). Hence C0 ×C1 is

not VCD-maximal.

Consider the case VCD(C0) = 0 and VCD(C1) > 0 (the other case is similar). Let c0 /∈ C0 and

c1 ∈ 2X1 be such that VCD(C1 ∪ {c1}) = VCD(C1) (e.g., any c1 ∈ C1). By Lemma 5, we have that

VCD((C0 ×C1)∪ {c0c1}) = VCD(C0 ×C1). Since c0c1 /∈ C0 ×C1, this proves that the class C0 ×C1 is not

VCD-maximal.
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