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Abstract

We study the following open question in computable model theory:

does there exist a structure of computable dimension two which is the

prime model of its first-order theory? We construct an example of

such a structure by coding a certain family of c.e. sets with exactly

two one-to-one computable enumerations into a directed graph. We

also show that there are examples of such structures in the classes of

undirected graphs, partial orders, lattices, and integral domains.

1 Introduction

Computable Model Theory studies the effective content of typical mathe-
matical concepts, constructions, and theorems, especially from algebra and
classical model theory. One of the most fundamental notions here is that of
an isomorphism. In algebra and model theory we usually identify isomorphic
structures and consider them to be the same. However, when studying com-
putable models, one can see that isomorphic structures might have different
computability-theoretic properties. We, therefore, introduce the notion of a
computable isomorphism, instead of the classical one, and use it as a tool
to distinguish two different computable presentations of the same structure.
This approach leads us to the notion of a computable dimension which is
defined below.
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Definition 1.1. A structure A is computable if its domain A ⊆ ω and its
atomic diagram are computable. A is computably presentable if it is isomor-
phic to a computable structure, which is called a computable presentation of
A.

Definition 1.2. The computable dimension of a structure A is the num-
ber of its computable presentations up to computable isomorphism. If the
computable dimension of A is 1 we say that A is computably categorical.

In this paper we will answer the following open question in computable
model theory: does there exist a structure of computable dimension two
which is the prime model of its own theory? It is easy to give examples of
prime models of dimension 1 or ω. For instance, the countable dense linear
order without endpoints and one successor structure (N, S) are computably
categorical, while (N,6) and Bω, the Boolean algebra of finite and cofinite
subsets of the naturals, have infinite computable dimensions.

However it is much more difficult to construct a structure of finite com-
putable dimension k > 1. Goncharov [2, 3] was the first to give an example
of such structure. In [2] he constructed a uniformly computably enumerable
(u.c.e.) family F of sets that has exactly two non-equivalent one-to-one com-
putable enumerations. This family is then encoded into a computable graph
G in such a way that the computable dimension of G is equal to the number
of non-equivalent one-to-one computable enumerations of F .

Since then many improvements to the construction have been made to ob-
tain various strengthenings of this result. For example, Cholak/Goncharov/
Khoussainov/Shore [1] showed that for each k > 1, there is a computably
categorical structure A such that any expansion of A by a single constant
has computable dimension k. This construction was further improved by
Hirschfeldt/Khoussainov/Shore [6] who showed that it is possible to make
the dimension of the expanded structure infinite.

The research on the structures of finite computable dimension is also re-
lated to the study of degree spectra of relations on computable models. The
degree spectrum of a relation R on a computable structure A is the set of Tur-
ing degrees of images of R in all computable presentations of A. Harizanov [4]
showed that there exists a relation U in a structure A of computable dimen-
sion two such that DgSpA(U) = {0,d}, where d 6 0′ and does not contain
a c.e. set. Later on, Khoussainov and Shore [8] proved that there exists a
relation U in a structure A of dimension two such that DgSpA(U) = {0,d},
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where d is c.e. but not computable. Hirschfeldt [5] further improved this re-
sult by showing that d can be chosen to be any non-computable c.e. Turing
degree.

All known examples of the structures of finite computable dimension k >
1 are not the prime models of their theories. Hence it was an open problem
as to whether there exists a prime model of computable dimension two. This
question is especially interesting because prime models are relatively simple
from a model-theoretic point of view as they are elementarily embeddable
into any other model of their theories. So, the problem is whether it is
possible to encode enough information into a prime model to construct a
structure of dimension two. The main result of this paper is the construction
of such a structure.

Theorem. There exists a structure of computable dimension two which is
the prime model of its own theory.

The construction is based on coding a u.c.e. family of sets F constructed
by Goncharov [2] into a graph. We will use some structural properties of F
to make the coding in such a way that every element of the graph is definable
by a first order formula, which implies that the structure is prime.

We also give examples of prime models of finite computable dimension in
some specific classes of algebraic structures.

Theorem. There are prime models of computable dimension two in the fol-
lowing classes of structures:

1) undirected graphs (section 3.1),

2) partially ordered sets (section 3.2),

3) lattices (section 3.3),

4) integral domains expanded by finitely many constants (section 3.4).

The construction of these examples follows the technique from Hirschfeldt/
Khoussainov/Shore/Slinko [7], where they developed the methods for coding
directed graphs into undirected, irreflexive graphs, partial orders, lattices, in-
tegral domains, nilpotent groups, etc. These codings preserve the following
computability-theoretic properties of the structures:

(a) degree spectra of the structures;

3



(b) degree spectra of relations on computable structures;

(c) computable dimensions of the structures as well as computable dimen-
sions of their expansions by a single constant.

We will show that if in the original structure A every element is definable
by a first order formula, then the structure B, into which we encode A, is
prime. In fact, every b ∈ B is also definable by a formula or, in the case of
integral domains, there is a formula with finitely many solutions that holds
on b.

The outline of the paper is as follows. In Section 2 we describe the con-
struction of a prime directed graph of computable dimension two. Then
in Section 3, using the methods from Hirschfeldt/Khoussainov/Shore/Slinko
[7], we will encode this graph into an undirected graph, a partial order, a
lattice, and an integral domain. It follows from [7] that all these codings
preserve computable dimensions. We show that these codings also preserve
the property of being the prime model. In many cases we provide an ex-
plicit proof that a given structure has computable dimension two rather then
referring the reader to [7].

2 The Main Construction

The main result of this paper is the following theorem.

Theorem 2.1. There exists a computable structure G of computable dimen-
sion two which is the prime model of its own theory.

The structure G will be a directed graph. The proof is based on coding
the u.c.e. family F constructed by Goncharov [2] into a computable graph
of dimension two in such a way that every element of G can be defined by
a first-order formula without parameters. This implies that G is the prime
model of its theory. We now restate the result of S. Goncharov in more detail.

Definition 2.2. Let F be a u.c.e. family of sets. A computable enumeration
µ : ω → F is a mapping from ω onto F such that the set {(n, k) : n ∈ µ(k)}
is c.e. We will also use the notation {Ai}i∈ω for an enumeration µ, where
Ai = µ(i).

An enumeration µ is reducible to ν, denoted µ 6 ν, if there is a com-
putable function f such that µ(i) = ν(f(i)) for every i ∈ ω. Two enumera-
tions µ and ν are equivalent, denoted µ ≡ ν, if µ 6 ν and ν 6 µ.
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Theorem 2.3 (Goncharov [2]). There exists a u.c.e. family F that has ex-
actly two nonequivalent one-to-one computable enumerations. Moreover, F
has the following properties:

(i) If S ∈ F is a finite set, then S contains an element n(S), called a
marker for a finite set S, that does not belong to any other set from
F .

(ii) If S ∈ F is an infinite set, then S contains an element n(S), called a
marker for an infinite set S, that does not belong to any other infinite

set from F .

Remark 2.4. We may assume that the family F contains infinitely many
one-element sets. Indeed, we can always take F ′ = {2S : S ∈ F}∪{{2k+1} :
k ∈ ω} instead of F . The family F ′ has exactly two nonequivalent one-to-one
computable enumerations. This follows from the fact that the index set of
the subfamily {{2k+1} : k ∈ ω} is computable in any one-to-one computable
enumeration of F ′.

Let {A0
n}n∈ω and {A1

n}n∈ω be two nonequivalent one-to-one computable
enumerations of F . For each i = 0, 1, fix a computable enumeration of
{Ai

n}n∈ω such that at every step s, exactly one element enters one of the
Ai

n’s.
We build two computable presentations G0 andG1 of the directed graphG

using a step-by-step construction. Let Gs
i be the finite part of Gi constructed

by the end of step s. When we add a new element to Gs
i , we always choose

the least element that has not been used so far. At every step s, we will have
that Gs

i ⊆ Gs+1
i and Gi =

⋃
s∈ω

Gs
i . We will use the following notations in our

construction.

Definition 2.5. Let n ∈ ω; the directed graph [n] has n + 3 many nodes
x0, x1, . . . , xn+2 with an edge from x0 to itself, an edge from xn+2 to x1, and
an edge from xi to xi+1 for i 6 n+ 1. We call x0 the top of [n].

Let S ⊆ ω; the directed graph [S] consists of one copy of [s] for every
s ∈ S, with all tops identified.

Definition 2.6. Two tops n0 and n1 ofGs
i are connected if there is an element

l ∈ Gs
i such that (n0, l), (l, n0), (n1, l), (l, n1) are edges in Gs

i . In this case l
is called the linking element.
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“To connect two tops n0, n1 of Gs
i using a linking element” means to add

one new element l as well as the edges (n0, l), (l, n0), (n1, l), (l, n1) to the
graph Gs

i .
A component is a maximal subgraph isomorphic to [S] for some S ⊆ ω.

Note that this is not necessarily the same as a maximal connected component.

The construction of G0 and G1 is now as follows.

Step 0. Let G0
0 = G0

1 = {2n : n ∈ ω} and, for every n ∈ ω, connect 2n to
itself in both G0

0 and G0
1. Thus 2n is a top in G0 and G1.

Step s + 1 . For i ∈ {0, 1}, do the following. Let k be the unique element
that enters some Ai

n at step s. Consider the component of Gs
i isomorphic to

[Ai
n,s] and containing the top 2n. Expand this component to one isomorphic

to [Ai
n,s ∪ {k}] = [Ai

n,s+1]. If k is not the first element that enters Ai
n, then

find the least m such that 2n is not connected to 2m in Gs
i and connect 2n

to 2m using one new linking element.
Now, for every pair u0, v0 of tops in Gs

0 and every pair u1, v1 of tops in
Gs

1 such that u0, u1 belong to the components isomorphic to [S0] and v0, v1

belong to the ones isomorphic to [S1] for some non-empty sets S0 and S1,
do the following. Check if u0, v0 are connected in Gs

0, but u1, v1 are not
connected in Gs

1, or vice versa. If yes, connect those tops ui, vi using one
linking element which are not connected in Gs

i .
End of the construction.

Lemma 2.7. G0 and G1 are isomorphic.

Proof. According to the construction, each top 2n inG0 (resp. G1) belongs to
the component isomorphic to [A0

n] (resp. [A1
n]). Since {A0

n}n∈ω and {A1
n}n∈ω

are one-to-one enumerations of the same family, G0 and G1 consist of the
same collection of components.

To finish the proof, we need to show that for every pair n0, n1 of tops in
G0 and every pair m0, m1 of tops in G1, if for i ∈ {0, 1}, ni and mi belong to
the isomorphic components, then n0, n1 are connected in G0 iff m0, m1 are
connected in G1. Suppose that n0, n1, m0, m1 is a counterexample to the
above statement such that, for instance, n0, n1 are connected in G0 and m0,
m1 are not connected in G1.

Let ni, mi be the tops of the components isomorphic to [Si], where i ∈
{0, 1}. By the construction, if n is the top of an infinite component of Gi,
then n is connected to all other tops in Gi. Therefore, [S0] and [S1] are finite.
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Hence there is a step s0 such that both Gs0

0 and Gs0

1 contain the components
isomorphic to [S0], [S1] with tops n0, n1 and m0, m1 respectively, and n0,
n1 are connected in Gs0

0 . Now, if m0 and m1 have not yet been connected,
then they will be connected at the next step. This contradiction proves the
lemma.

Lemma 2.8. G0 and G1 are not computably isomorphic.

Proof. Let f : G0 → G1 be a computable isomorphism. Note that f maps
tops to tops, and the component containing the top 2n in G0 is isomorphic
to the one containing the top f(2n) in G1. Therefore, the enumerations
{A0

n}n∈ω and {A1
n}n∈ω are reducible to one another via the computable func-

tions h0(n) = f(2n)/2 and h1(n) = f−1(2n)/2, which contradicts our choice
of {A0

n}n∈ω and {A1
n}n∈ω.

Lemma 2.9. Let H be a computable graph isomorphic to G, then H is com-
putably isomorphic either to G0 or to G1. Thus G has computable dimension
two.

Proof. Since H is computable, there is a computable list t0 < t1 < t2 < . . .
of the tops in H , where < is the natural order on ω. The structure H gives
rise to a one-to-one computable enumeration {An}n∈ω of F such that k ∈ An

iff there is a subgraph of H isomorphic to [k] containing tn as its top.
Since F has exactly two nonequivalent one-to-one computable enumer-

ations, {An}n∈ω is equivalent either to {A0
n}n∈ω or {A1

n}n∈ω. Suppose that
{An}n∈ω is equivalent to {A0

n}n∈ω. We now construct a computable isomor-
phism h from H to G0.

By our assumption, there is a computable function f such that An = A0
f(n)

for all n. Note that f is a permutation of ω because {An}n∈ω and {A0
n}n∈ω

are one-to-one. Take any k ∈ H ; the value of h(k) is defined according to
the following three cases:

1) If k = tn for some n, then h(k) = 2f(n).

2) If k is the linking element between tn and tm, then h(k) is the linking
element between 2f(n) and 2f(m) in G0. Note that such a linking element
exists since H ∼= G0.
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3) If k is neither a top nor a linking element, then there are m and tn such
that k belongs to the subgraph ofH isomorphic to [m] with the top tn. Let
l be the length of the unique path from tn to k without repetitions. Now,
h(k) is the unique element of G0 belonging to the subgraph isomorphic
to [m] with the top 2f(n) such that the length of the path from 2f(n) to
h(k) without repetitions is equal to l.

By the construction, h : H → G0 is an isomorphism. It is computable
since, for a given k ∈ H , one can effectively find out which one of the cases
1), 2) or 3) holds and then effectively find the value of h(k).

To show that G is prime we will use the following model-theoretic fact.

Proposition 2.10. Let A be a model such that for every a ∈ A, there is a
formula ϕa(x) in the language of A with the property that

A � ∀z (ϕa(z) ↔ a = z).

Then A is the prime model of its theory.

Lemma 2.11. G is prime.

Proof. Due to Proposition 2.10, to prove that G is prime it suffices to show
that for every a ∈ G, there is a formula ϕa(x) in the language of directed
graphs such that G � ∀x (ϕa(x) ↔ a = x). Let E(x, y) be the edge relation
on G.

By the construction, the top of every infinite component is connected
to all other tops. On the other hand, the top of every finite component is
not connected to all other tops. To see this, let 2n0 be the top of a finite
component [A0

n0
] in G0, and let n1 be such that A0

n0
= A1

n1
. Hence, 2n1 is

the top of a finite component isomorphic to [A0
n0

] in G1. Consider the step
s0 by which we have constructed the components [A0

n0
] and [A1

n1
] in Gs0

0 and
Gs0

1 respectively. Since F contains infinitely many singletons, there are k0

and k1, such that 2k0 and 2n0 are not connected in Gs0

0 , 2k1 and 2n1 are not
connected in Gs0

1 , and A0
k0

, A1
k1

are equal one-element sets. Then 2k0, 2n0 are
not connected in G0 as well as 2k1, 2n1 are not connected in G1 because we
do not connect 2k0 with any top when the only element of A0

k0
is enumerated

in it, and the same is true for 2k1 in G1.
First, let us define ϕa(x) when a is a top. If a is the top of a finite

component [S], then ϕa(x) states that E(x, x) and x belongs to a sub-
graph isomorphic to [n(S)], where n(S) is the marker for the finite set
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S ∈ F . If a is the top of an infinite component [S], then ϕa(x) states that
E(x, x) & ∀y (E(y, y) → “x and y are connected via a linking element”),
and x belongs to a subgraph isomorphic to [n(S)], where n(S) is the marker
for the infinite set S ∈ F .

If a is a linking element between two tops u and v, then

ϕa(x) = ∃y ∃z (E(x, y) ∧E(y, x) ∧E(x, z) ∧ E(z, x) ∧ ϕu(y) ∧ ϕv(z)).

If a is neither a top nor a linking element, then let k, l and u be such
that a belongs to the subgraph of G isomorphic to [k] with the top u, and l
is the length of the unique path from u to a without repetitions. In this case
ϕa(x) states that

∃z (ϕu(z) & “x belongs to a subgraph isomorphic to [k] with top z” &

“there is a path of length l without repetitions from z to x”).

Theorem 2.1 now follows from Lemmas 2.7, 2.8, 2.9, and 2.11.

3 Codings into another structures

Hirschfeldt, Khoussainov, Shore, and Slinko [7] developed the technique for
coding directed graphs into structures like symmetric, irreflexive graphs, par-
tial orders, lattices, rings, 2-step nilpotent groups, and so on. These codings
are effective in the sense that they preserve various interesting computability-
theoretic properties of the structures such as the computable dimension, the
degree spectra of the structures, and the spectra of relations on computable
structures.

Our goal in this section is to show that in some cases these codings also
preserve the model-theoretic property of being the prime model. For instance,
let G be a graph such that every element of it is defined by a first order
formula. We will show that the codings of G into a partial order, a lattice,
and an integral domain preserve this property. Hence these structures will be
the prime models of their theories. However, in the case of integral domains
we will need to add finitely many constants.

Let G be the directed graph constructed in the previous section. First,
we show how to encode G into a prime symmetric, irreflexive graph HG of
computable dimension two. We then encode HG into a prime partial order,
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a lattice, and an almost prime integral domain preserving its computable
dimension. The reader can find pictorial diagrams of these codings in [7].

3.1 Symmetric, irreflexive graphs

Let G be an infinite, computable graph, and E be its edge relation. Without
loss of generality we will assume that |G| = ω. A computably presentable
symmetric, irreflexive graph HG = (|HG|, F ) is defined as follows.

1. |HG| = {a, a′, b, b′, b′′} ∪ {ci, di, ei : i ∈ ω}.

2. F (x, y) holds only in the following cases.

(a) F (a, a′), F (a′, a), F (b, b′), F (b′, b), F (b′, b′′), F (b′′, b′).

(b) For all i ∈ ω,

F (a, ci) and F (ci, a), F (di, ei) and F (ei, di),

F (ci, di) and F (di, ci), F (b, ei) and F (ei, b).

(c) If E(i, j) then F (ci, ej) and F (ej , ci).

Define

D(x) = {x ∈ |HG| : x 6= a′ ∧ F (a, x)} = {ci : i ∈ ω}

and

R(x, y) = {(x, y) : D(x)∧D(y)∧∃d, e(F (b, e)∧F (e, d)∧F (d, y)∧F (x, e))}.

Then the mapping g : i→ ci is an isomorphism from G onto the graph with
the domain DHG and the edge relation RHG(x, y).

Proposition 3.1. For any computable presentation of HG, the sets DHG =
{cHG

i : i ∈ ω}, {dHG

i : i ∈ ω}, {eHG

i : i ∈ ω}, and the relation RHG are
computable.

Proof. Clearly, DHG = {cHG

i : i ∈ ω}, {dHG

i : i ∈ ω}, and {eHG

i : i ∈
ω} are computable since they are definable by quantifier-free formulas with
parameters. Hence, RHG is also computable since for all x, y ∈ DHG,

∃d, e[F (b, e) ∧ F (e, d) ∧ F (d, y) ∧ F (x, e)]

⇐⇒ ∀d, e[(F (b, e) ∧ F (e, d) ∧ F (d, y)) → F (x, e)].
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Proposition 3.2. The relations D and R are definable by first-order formu-
las in the language of graphs.

Proof. It suffices to show that the constants a, a′, b, b′, and b′′ are definable.
Let

ψb′′(x) = ∃! yF (x, y) ∧ ∀y[F (x, y) → ∃! z(z 6= x ∧ F (z, y))],

then ψb′′ defines b′′. The following formulas define b′, b, a′, and a respectively:

ψb′(x) = ∃y(F (x, y) ∧ ψb′′(y)), ψb(x) = ∃y(F (x, y) ∧ ψb′(y)) ∧ ¬ψb′′(x),

ψa′(x) = ∃! yF (x, y) ∧ ¬ψb′′(x), ψa(x) = ∃y(F (x, y) ∧ ψa′(y)).

Let G be the prime graph of computable dimension two constructed in
Section 2, and let G1, G2 be its two computable presentations which are
not computably isomorphic. For each j = 1, 2, let us choose a computable

presentation HGj
of HG such that the isomorphic embedding gj : i → c

HGj

i

is computable.

Proposition 3.3. HG has computable dimension two.

Proof. If f : HG1
→ HG2

is a computable isomorphism, then so is f̂ =
g−1
2 ◦ f ◦ g1 : G1 → G2. Indeed, EG1(i, j) ⇔ RHG1 (g1(i), g1(j)) ⇔ RHG2 (f ◦
g1(i), f ◦ g1(j)) ⇔ EG2(g−1

2 ◦ f ◦ g1(i), g
−1
2 ◦ f ◦ g1(j)). So, HG1

and HG2
are

not computably isomorphic.
Let HG′ be any computable presentation of HG, and let G′ be a com-

putable graph with the domain DHG′ and the edge relation RHG′ . Since
HG′

∼= HG and D and R are definable relations, we have G′ ∼= G. Hence for
some j = 1, 2, there is a computable isomorphism h : G′ → Gj . Now we can
construct a computable isomorphism ϕ from HG′ to HGj

.

Let ϕ(aHG′ ) = aHGj , ϕ(a′HG′ ) = a′HGj , ϕ(bHG′ ) = bHGj , ϕ(b′HG′ ) = b′HGj ,
ϕ(b′′HG′ ) = b′′HGj . For every other x ∈ |HG′|, ϕ(x) is defined as follows.

(1) If x ∈ DHG′ , that is x = c
HG′

i for some i ∈ ω, let ϕ(x) = gj(h(x)) = c
HGj

h(x) .

(2) If x = d
HG′

i for some i ∈ ω, let ϕ(x) = d
HGj

h(y) , where y = c
HG′

i is an element

of DHG′ which is connected to x. In other words, ϕ(x) is an element of

{d
HGj

i : i ∈ ω} that is connected to gj(h(y)) = c
HGj

h(y) .
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(3) If x = e
HG′

i for some i ∈ ω, let ϕ(x) = e
HGj

h(y) , where y = c
HG′

i .

It is easy to check that this construction for ϕ : HG′ → HGj
is effective.

Therefore, HG has dimension two.

Proposition 3.4. HG is prime.

Proof. It suffices to show that every element x ∈ |HG| is definable by a first
order formula. The formulas that define the constants a, a′, b, b′, and b′′ are
given in the proof of Proposition 3.2. Consider ci; we know that there exists
a formula ϕi(x) that defines the element i ∈ |G|. Let ψci

(x) be the formula
obtained from ϕi(x) by replacing every occurrence of the binary predicate E
with the formula for R, every occurrence of ∀z . . . with ∀z(D(z) → . . .), and
every occurrence of ∃z . . . with ∃z(D(z)∧ . . .), where z is any variable. Then
ψci

(x) defines ci. Furthermore, di is defined by

ψdi
(x) = ¬ψa(x) ∧ ∃y(F (x, y) ∧ ψci

(y)) ∧ ¬∃y(F (x, y) ∧ ψb(y)),

and ei is defined by ψei
(x) = ∃y(F (x, y) ∧ ψdi

(y)) ∧ ¬ψci
(x). Therefore, HG

is prime.

3.2 Partial orderings

Let G be an infinite, computable, symmetric, irreflexive graph, and E be its
edge relation. Again we assume that |G| = ω. A computably presentable
partial ordering PG = (|PG|,4) is defined as follows.

1. |PG| = {a, b} ∪ {ci : i ∈ ω} ∪ {di,j : i < j ∈ ω}.

2. The relation 4 is the smallest partial ordering on |PG| satisfying the fol-
lowing conditions.

(a) a 4 ci 4 b for all i ∈ ω.

(b) If i < j and E(i, j), then di,j 4 ci, cj.

(c) If i < j and ¬E(i, j), then ci, cj 4 di,j.
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Define
D(x) = {x ∈ |PG| : a ≺ x ≺ b} = {ci : i ∈ ω}

and

R(x, y) = {(x, y) : x 6= y ∧D(x) ∧D(y) ∧ ∃z 6= a (z 4 x, y)}.

Note that g : i → ci is an isomorphism from G onto the graph with the
domain DPG and the edge relation RPG(x, y).

Proposition 3.5. For any computable presentation of PG, the relations DPG

and RPG are computable.

Proof. Obviously, DPG is computable, and so is RPG since for all x 6= y ∈
DPG,

∃z 6= a (z 4 x, y) ⇐⇒ ¬∃z 6= b (x, y 4 z).

Proposition 3.6. The relations D and R are definable by first-order formu-
las in the language of partial orders.

Proof. It suffices to show that the constants a and b are definable. Let
ψa(x) = ∀y (∃z (z ≺ y) → x 4 y) and ψb(x) = ∀y (∃z (y ≺ z) → y 4 x). It is
not hard to see that ψa(x) and ψb(x) define a and b, respectively.

Let G be the prime, symmetric, irreflexive graph of computable dimen-
sion two constructed in Section 3.1, and let G1, G2 be its two computable
presentations which are not computably isomorphic. For each j = 1, 2, let us

choose a computable presentation of PGj
such that the mapping gj : i→ c

PGj

i

is computable.

Proposition 3.7. PG has computable dimension two.

Proof. If f : PG1
→ PG2

is a computable isomorphism, then so is f̂ = g−1
2 ◦

f ◦ g1 : G1 → G2. Therefore, PG1
and PG2

are not computably isomorphic.
Let PG′ be any computable presentation of PG, and letG′ be a computable

graph with the domain DPG′ and the edge relation RPG′ . Since PG′
∼= PG and

D and R are definable relations, we have G′ ∼= G. Hence for some j = 1, 2,
there is a computable isomorphism h : G′ → Gj . A computable isomorphism
ϕ from PG′ to PGj

is now defined as follows.
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Let ϕ(aPG′ ) = aPGj and ϕ(bPG′ ) = bPGj . For every x ∈ DPG′ , that is

if x = c
PG′

i for some i ∈ ω, let ϕ(x) = gj(h(x)) = c
PGj

h(x). If x = d
PG′

i,j for

some i < j, then either ∃ y1, y2 ∈ DPG′ (y1 6= y2 ∧ x 4 y1, y2) or ∃ y1, y2 ∈
DPG′ (y1 6= y2∧y1, y2 4 x). We can effectively find out which one of the cases
holds as well as the relevant y1, y2. Suppose x 4 y1, y2; in this case let ϕ(x)

be the unique element of PGj
that is less than both gj(h(y1)) = c

PGj

h(y1) and

gj(h(y2)) = c
PGj

h(y2) and that is not equal to aPGj .
It is easy to see that this construction for ϕ : PG′ → PGj

is effective.
Therefore, PG has computable dimension two.

Proposition 3.8. PG is prime.

Proof. Let us show that every element of PG is definable by a first order
formula. The formulas that define the constants a and b are given in the
proof of Proposition 3.6. Recall that every i ∈ |G| is defined by some formula
ϕi(x). Now, every ci is defined by the formula ψci

(x) obtained from ϕi(x)
by replacing every occurrence of the binary predicate E with the formula for
R, every occurrence of ∀z . . . with ∀z(D(z) → . . .), and every occurrence of
∃z . . . with ∃z(D(z) ∧ . . .), where z is any variable. If E(i, j), then di,j is
defined by

ψdi,j
(x) = ¬ψa(x) ∧ ∃ y1, y2(ψci

(y1) ∧ ψcj
(y2) ∧ x 4 y1, y2).

If ¬E(i, j), then di,j is defined by

ψdi,j
(x) = ¬ψb(x) ∧ ∃ y1, y2(ψci

(y1) ∧ ψcj
(y2) ∧ y1, y2 4 x).

Therefore, PG is prime.

3.3 Lattices

Let G be an infinite, computable, symmetric, irreflexive graph with edge
relation E and |G| = ω. A computably presentable lattice LG = (|LG|,f,g)
is defined as follows.

1. |LG| = {a, b, k} ∪ {ci, mi : i ∈ ω} ∪ {di,j : i < j ∧ E(i, j)}.
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2. For all x, y ∈ |LG|, if x 6= y, then x g y = a and x f y = b, except as
required to satisfy the following conditions.

(a) If i < j and E(i, j), then ci g cj = di,j.

(b) k g ci = mi for all i ∈ ω.

(c) xg b = x and xf a = x for all x ∈ |LG|.

Define

D(x) = {x ∈ |LG| : (k g x 6= a) ∧ (k g x 6= x) ∧ x 6= b} = {ci : i ∈ ω}

and
R(x, y) = {(x, y) : x 6= y ∧D(x) ∧D(y) ∧ (xg y 6= a)}.

Note that g : i → ci is an isomorphism from G onto the graph with the
domain DLG and the edge relation RLG(x, y). The following proposition is
obvious.

Proposition 3.9. For any computable presentation of LG, the relations DLG

and RLG are computable.

Let G be the prime, symmetric, irreflexive graph of computable dimension
two constructed in Section 3.1. If we add one isolated vertex to G, then the
new graph will have the same computable dimension as G, and every element
will be definable by a first order formula. This is because G does not have
isolated vertices. So, in this section we assume that G has one isolated
vertex. Now, let G1, G2 be two computable presentations of G that are
not computably isomorphic. For each j = 1, 2, let us choose a computable

presentation of LGj
such that the mapping gj : i→ c

LGj

i is computable.

Proposition 3.10. The relations D and R are definable by first-order for-
mulas in the language of lattices.

Proof. It suffices to show that the constants a, b, and k are definable. The
formulas ψa(x) = ∀y(xg y = x) and ψb(x) = ∀y(xf y = x) define a and b,
respectively. Since G has an isolated vertex, k is the only level-2 element of
LG whose join with any level-2 element is not a. The level-2 elements of LG

are {k, ci : i ∈ ω}. This can be expressed by the formula

ψk(x) = ∃z (ψa(z) ∧ lev2(x) ∧ ∀y (lev2(y) → xg y 6= z)),

where lev2(x) = ∃!y (x 6= y ∧ xf y = y).
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Proposition 3.11. LG has computable dimension two.

Proof. If f : LG1
→ LG2

is a computable isomorphism, then so is f̂ = g−1
2 ◦

f ◦ g1 : G1 → G2. Therefore, LG1
and LG2

are not computably isomorphic.
Let LG′ be any computable presentation of LG, and letG′ be a computable

graph with the domain DLG′ and the edge relation RLG′ . Since LG′
∼= LG and

D and R are definable relations, we have G′ ∼= G. Hence for some j = 1, 2,
there is a computable isomorphism h : G′ → Gj . A computable isomorphism
ϕ from LG′ to LGj

is defined as follows.

Let ϕ(aLG′ ) = aLGj , ϕ(bLG′ ) = bLGj , and ϕ(kLG′ ) = kLGj . For every other
x ∈ |LG′ |, ϕ(x) is defined as follows.

(1) If x ∈ DLG′ , that is x = c
LG′

i for some i ∈ ω, let ϕ(x) = gj(h(x)) = c
LGj

h(x).

(2) If x /∈ DLG′ and x g kLG′ 6= aLG′ , that is x = m
LG′

i for some i ∈ ω,
then there is z ∈ DLG′ such that z g kLG′ = x. In this case let ϕ(x) =
kLGj g ϕ(z).

(3) If x /∈ DLG′ and x g kLG′ = aLG′ , that is x = d
LG′

i,j for some i < j,
then there are z1, z2 ∈ DLG′ such that z1 g z2 = x. In this case let
ϕ(x) = ϕ(z1) g ϕ(z2).

It is easy to see that this construction for ϕ : LG′ → LGj
is effective. Hence

LG has dimension two.

Proposition 3.12. LG is prime.

Proof. We show that every element of LG is definable by a first order formula.
The formulas that define the constants a, b, and k are given in the proof of
Proposition 3.10. Let i ∈ |G| be defined by a formula ϕi(x), then ci is defined
by the formula ψci

(x) obtained from ϕi(x) by replacing every occurrence of
the binary predicate E with the formula for R, every occurrence of ∀z . . .
with ∀z(D(z) → . . .), and every occurrence of ∃z . . . with ∃z(D(z) ∧ . . .),
where z is any variable. Each di,j is defined by

ψdi,j
(x) = ∃ z1, z2((x = z1 g z2) ∧ ψci

(z1) ∧ ψcj
(z2)).

Each mi is defined by

ψmi
(x) = ∃ z1, z2((x = z1 g z2) ∧ ψci

(z1) ∧ ψk(z2)).
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Therefore, LG is prime.

3.4 Integral domains

Definition 3.13. We say that a model A is almost prime if there is a finite
tuple ā = a1, . . . , ak of elements of A such that the enriched structure (A, ā)
is the prime model of its own theory.

Let G be a computable symmetric, irreflexive graph with the edge relation
E and |G| = ω. Fix a number p which is either 0 or prime. We will use the
convention that Z0 = Z. Let I be the set of invertible elements of Zp, which
is obviously finite.

The computably presentable integral domain AG is defined to be

Zp[xi : i ∈ ω]
[ y

xixj

: E(i, j)
][ z

xixj

: ¬E(i, j)
][ y
xn

i

: i, n ∈ ω
]
.

From [7] it follows that AG has the same computable dimension as G if G
has the following property: for every finite set of nodes S, there exist nodes
x, y /∈ S that are connected by an edge. Note that the graph constructed in
Section 3.1 satisfies this property. Therefore, for this G, AG has computable
dimension two.

We prove that AG is almost prime. This will require the following model-
theoretic fact, which is a strengthening of Proposition 2.10.

Proposition 3.14. Let A be a model in a countable language. Suppose that
for every a ∈ A, there is a formula ϕa(x) in the language of A such that
A � ϕa(a) and ϕa(A) = {b ∈ A : A � ϕa(b)} is finite. Then A is the prime
model of its theory.

Define
D(x) = {x ∈ |AG| : x /∈ I ∧ ∃r(x2r = z)},

Q(x, x′) = {(x, x′) : D(x) ∧ ∃a ∈ I(x′ = ax)},

and

R(x, x′) = {(x, x′) : D(x) ∧D(x′) ∧ ¬Q(x, x′) ∧ ∃r(rxx′ = y)}.

Let ϕi(x) be a formula that defines i ∈ |G|, and let ψi(x) be the formula
obtained from ϕi(x) by replacing every occurrence of the binary predicate
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E with the formula for R, every occurrence of the equality relation with the
formula for Q, and every occurrence of ∀z . . . and ∃z . . . with ∀z(D(z) → . . .)
and ∃z(D(z) ∧ . . .), respectively, where z is any variable.

From Lemmas 5.1, 5.2 and Corollary 5.5 of [7] it follows that I can be
defined as the set of invertible elements of AG, DAG = {axi : i ∈ ω ∧ a ∈ I},
and RAG = {(axi, bxj) : EG(i, j) ∧ a, b ∈ I}. This means that QAG is a
congruence relation on (DAG, RAG), and the quotient structure of (DAG, RAG)
modulo QAG is isomorphic to (G,E). Therefore, ψi(AG) = {axi : a ∈ I}.
Note that ψi(AG) is finite since so is I.

Let

Gen ={±1} ∪ {xi : i ∈ ω} ∪
{ y

xixj

: E(i, j)
}
∪

{ z

xixj

: ¬E(i, j)
}
∪

{ y

xn
i

: i, n ∈ ω
}
.

Every element of AG can be expressed as a sum of products of elements of
Gen. Let us add the constants for y and z to the language of rings. Now, for
every g ∈ Gen , there is a formula ψg(x) in the expanded language such that
AG � ψg(g) and ψg(AG) is finite. The formulas for xi’s are given above. For
y/xixj the required formula is ψ(x) = ∃u1∃u2 (ψi(u1)∧ψj(u2)∧ u1u2x = y).
It is easy to see that ψ(AG) is finite. The other cases are similar.

Since every a ∈ AG can be expressed as a term involving elements of
Gen, one can construct a formula ψa(x) in the language expanded by new
constants for y and z such that ψa(x) holds on a in AG and ψa(AG) is finite.
Therefore, due to Proposition 3.14, AG is almost prime.

References

[1] P. Cholak, S. Goncharov, B. Khoussainov, and R. A. Shore. Computably
categorical structures and expansions by constants. J. Symbolic Logic,
64(1):13–37, 1999.

[2] S. S. Goncharov. Computable univalent numerations. Algebra i Logika,
19(5):507–551, 617, 1980.

[3] S. S. Goncharov. The problem of the number of nonautoequivalent con-
structivizations. Algebra i Logika, 19(6):621–639, 745, 1980.

18



[4] V. S. Harizanov. The possible Turing degree of the nonzero member in a
two element degree spectrum. Ann. Pure Appl. Logic, 60(1):1–30, 1993.

[5] D. R. Hirschfeldt. Degree Spectra of Relations on Computable Structures.
PhD Thesis, Cornell University, 1999.

[6] D. R. Hirschfeldt, B. Khoussainov, and R. A. Shore. A computably cate-
gorical structure whose expansion by a constant has infinite computable
dimension. J. Symbolic Logic, 68(4):1199–1241, 2003.

[7] D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko. Degree
spectra and computable dimensions in algebraic structures. Ann. Pure
Appl. Logic, 115(1-3):71–113, 2002.

[8] B. Khoussainov and R. A. Shore. Computable isomorphisms, degree
spectra of relations, and Scott families. Computability theory. Ann. Pure
Appl. Logic, 93, 98(1-3):153–193, 297–298, 1998, 1999.

19


