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Abstract

In this paper we study the question as to which computable alge-

bras are isomorphic to non-computable Π0

1-algebras. We show that many

known algebras such as the standard model of arithmetic, term algebras,

fields, vector spaces and torsion-free abelian groups have non-computable

Π0

1-presentations. On the other hand, many of this structures fail to have

non-computable Σ0

1-presentation.

1 Introduction

Effectiveness issues in algebra and model theory have been investigated in-
tensively in the last thirty years. One wishes to understand the effective content
of model-theoretic and algebraic results, and the interplay between notions of
computability, algebra, and model theory. A significant body of work has re-
cently been done in the area, and this is attested by recent series of Handbooks

and surveys in computable mathematics, computability, and algebra (see, e.g.,
[1], [4], [3]). An emphasis has been placed on the study of computable models
and algebras. These are the structures whose domains are computable sets of
natural numbers, and whose atomic diagrams are computable. The study of
computable model theory and algebra can naturally be extended to include a
wider class of structures. This can be done by postulating that the atomic dia-
grams or natural fragments of the atomic diagrams are in some complexity class
such as Σ0

n or Π0
n. These classes of algebras include computably enumerable

(c.e.) algebras and co-c.e. algebras which we call Σ0
1-algebras and Π0

1-algebras,
respectively. Roughly, Σ0

1-algebras are the ones whose positive atomic diagrams
are computably enumerable, and Π0

1-algebras are the ones whose negative atomic
diagrams are computably enumerable. These include finitely presented algebras
(e.g. finitely presented groups or rings) and groups generated by finitely many

∗This research was partially supported by the Marsden Fund of New Zealand. The third

author’s research was partially supported by RFFR grant No. 02-01-00593 and Council for

Grants under RF President, project NSh-2112.2003.1

1



computable permutations of ω. There has been some research on Σ0
1-algebras

(see for example [2], [5], [6], [7], [8], [9]) but not much is known about Π0
1-algebras

and their properties. The main goal of this paper is the study of the question as
to which computable algebras are isomorphic to non-computable Π0

1-algebras.
Examples we have in mind are typical computable structures such as the arith-
metic (ω, S,+,×), finitely generated term algebras and fields. We would like
to know whether the isomorphism types of these typical computable structures
contain non-computable but Π0

1-algebras. In regard to this, it is worth to note
that all these mentioned structures fail to be isomorphic to non-computable
Σ0

1-algebras, and hence existence of non-computable Π0
1-algebras isomorphic to

algebras mentioned is of an independent interest.

Here is a brief outline of the paper. Further in this section, we give the basic
definitions of computable, Σ0

1, and Π0
1-algebras, and provide some examples. In

the second section we provide a theorem that characterizes those Σ0
1-algebras

that are non-computable. As a corollary we obtain that the isomorphism types
of finitely generated computable algebras (in particular, the arithmetic and
the term algebras) and computable infinite fields fail to have non-computable
Σ0

1-presentations. In the third section we single out a class of algebras and
call algebras from that class term-separable. We prove that many known al-
gebras such as the arithmetic, the term algebras, fields and vector spaces are
term-separable. Finally, the last section is devoted to showing that all com-
putable term-separable algebras can be made isomorphic to non-computable
Π0

1-algebras.

We now turn to the basic notions of this paper. For the basics of com-
putability theory the reader is referred to Soare [10]. An algebra is a structure
of a finite purely functional language (signature) σ. Thus, any algebra A is of

the form (A; fA0 , . . . , fAn ), where A is a nonempty set called the domain of the

algebra, and each fAi is a a total operation on the domain A that interprets
the function symbol fi ∈ σ. When there is no confusion the operation named
by fi is denoted by the same symbol fi. We refer to the symbols f0, . . . , fn

as the signature of the algebra. Often we call the operations f0, . . . , fn basic

operations or functions (of the algebra A). Presburger arithmetic (ω; 0, S,+)
is an algebra, so are groups, rings, lattices and Boolean algebras. Fundamental
structures which arise in computer science such as lists, stacks, queues, trees,
and vectors can all be viewed and studied as algebras.

We now define the notion of a term of an algebra A over a variable set
X = {x0, x1, . . .}.

Definition 1. Let A = (A; f0, . . . , fr) be an algebra. We define terms of this
algebra as formal expressions over a variable set X and domain A as follows.
Every element a ∈ A and variable x ∈ X is a term. If t1, . . . , tn are terms and
f ∈ σ is a function symbol of arity n then f(t1, . . . , tn) is also a term.

As terms are formal expressions formed from the setA∪X using the signature
σ, it makes sense to talk about syntactic equality between terms of the algebra
A. For instance, examples of terms of the arithmetic (ω, S,+,×) are 5, (x +
(7 × y)) + S(6), 2 + 7 and 7 + 2. Note that syntactically, the terms 2 + 7 and
7 + 2 are distinct. The elements ā appearing in a term t of the algebra A are
called parameters of t. We write t(x̄, ā) to mean that the variables of term t are
among x̄ and parameters are among ā.
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Consider the set of all terms without parameters. It can be transformed into
an algebra in a natural way by declaring the value of f on any tuple (t1, . . . , tn)
to be the term f(t1, . . . , tn). This is called the term algebra with generator
set X .

Let A = (A, f0, . . . , fn) be an algebra with computable universe. For each
term t = t(ā) of A without free variables introduce a new constant ct that names
the element t(ā). Expand the signature σ by adding to it all these constant
symbols. So, elements a ∈ A may have several constants c naming it. Denote
the expanded signature by σA. Thus, we have an expansion of A by constants
c.

Definition 2. Consider the expanded algebra A in the signature σA.

1. The atomic diagram of A, denoted by D(A) is the set of all expressions
of the type fi(ca1

, . . . , can
) = fj(cb1 , . . . , cbk

), fi(ca1
, . . . , can

) = cb, ca = cb
and their negations which are true in the algebra A. The algebra A =
(A; f0, . . . , fn) is computable if its atomic diagram is a computable set.

2. The positive atomic diagram of A, denoted by PD(A), is the set of all
expressions of the type fi(ca1

, . . . , can
) = fj(cb1 , . . . , cbk

), fi(ca1
, . . . , can

) =
cb, and ca = cb which are true in the algebra A. The algebra A =
(A; f0, . . . , fn) is Σ0

1-algebra if its positive atomic diagram is a com-
putably enumerable set.

3. The negative atomic diagram of A, denoted by ND(A), is the set of all
expressions of the type fi(ca1

, . . . , can
) 6= fj(cb1 , . . . , cbk

), fi(ca1
, . . . , can

) 6=
cb, and ca 6= cb which are true in the algebra A. The algebra A =
(A; f0, . . . , fn) is Π0

1-algebra if its negative atomic diagram is a com-
putably enumerable set.

It is easy to see that the algebra is computable if and only if it is both Σ0
1

and Π0
1-algebra. We give now several examples.

Example 1. Let A = (A; f0, . . . , fn) be an infinite computable algebra. Then
it is isomorphic to an algebra (ω, h1, . . . , hn), where each hi is a computable
function. Clearly all algebras of the form (ω, g1, . . . , gn), where each gi is a
computable function, are computable.

Example 2. Typical examples of Σ0
1-algebras are:

(i) The Lindenbaum algebras of computably enumerable first-order theories,
such as Peano arithmetic.

(ii) Finitely presented groups, and in fact all finitely presented algebras.

The following two examples provide simple ways of building Π0
1-algebras.

Example 3. Let p1, . . . , pn be computable permutations of ω. Consider the
group G generated by these permutations. Then G is a Π0

1-algebra. Indeed, if
g and g′ are elements of this group then their non-equality is confirmed by the
existence of an n ∈ ω at which g(n) 6= g′(n).

Example 4. Let A = (ω, f0, . . . , fn) be a computable algebra. For terms t(x̄)
and p(x̄) we write t =A p if the values of t and p are equal for all instantiation of
variables. Consider the algebra B obtained by factoring the term algebra with
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respect to the relation =A. The algebra B is a Π0
1-algebra since non-equality

between any two terms t(x̄) and p(x̄) is confirmed by the existence of a tuple
ā ∈ A at which t(ā) 6= p(ā).

Example 5. Let Σ = {0, . . . , k − 1} be a finite alphabet and L ⊆ Σ∗ be a
computable language. Consider a computable algebra A = (Σ∗, S0, . . . , Sk−1),
where Si(x) = xi for every x. Define a congruence relation ∼L on A as follows:
x ∼L y iff ∀u (xu ∈ L⇐⇒ yu ∈ L). Then A/ ∼L is Π0

1-algebra.

A Π0
1-algebra (or Σ0

1-algebra) A can be explained as follows. As the negative
atomic diagram of A can be computably enumerated, the set E = {(ca, cb) |
ca = cb is true in the algebra A}, representing the equality relation in A, is the
complement of a c.e. set. Let f be a basic n-ary operation on A. From the
definition of a computably enumerable algebra, the operation f can be thought
of as a function induced by a computable function, often also denoted by f ,
which respects the E-equivalence classes in the following sense: for all x1, . . .,
xn, y1, . . ., yn if (xi, yi) ∈ E, then (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ E. Therefore,
a natural way to think about A is that the elements of A are E-equivalence
classes, and the operations of A are induced by computable operations. This
reasoning suggests another equivalent approach to the definition of Π0

1-algebra
(as well as Σ0

1-algebra) explained in the next paragraph.

Let E be an equivalence relation on ω. A computable n-ary function f
respects E if for all natural numbers x1, . . ., xn and y1, . . ., yn so that (xi, yi) ∈
E, for i = 1, . . . , n, we have (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ E. Let ω(E) be the
factor set obtained by factorizing ω by E, and let f0, . . . , fn be computable
operations on ω which respect the equivalence relation E. An E-algebra is
then the algebra (ω(E), F0, . . . , Fn), where each Fi is naturally induced by fi.
It is now not hard to show that an algebra A is a Π0

1-algebra if and only if A is
an E-algebra for some Π0

1 equivalence relation E. In a similar way, an algebra A
is a Σ1-algebra if and only if A is an E-algebra for some computably enumerable
equivalence relation E.

The isomorphism type of an algebra A is the set of all algebras isomor-
phic to A. We are interested in those algebras whose isomorphism types con-
tain Π0

1-algebras. We formalize this in the following definitions. An algebra
is Π0

1-presentable if it is isomorphic to a Π0
1-algebra. Note that there is a

distinction between Π0
1-algebras and Π0

1-presentable algebras. Π0
1-algebras are

given explicitly by Turing machines representing the basic operations and the
complement of equality relation of the algebra, while Π0

1-presentability refers
to the property of the isomorphism types of algebras. All these notions make
sense for Σ0

1-presentable algebras as well, and we will use them without explicit
definitions.

There are some notational conventions we need to make. Let A be a Π0
1-

algebra. As the equality relation on A can be thought of as an equivalence
relation (with a c.e. complement) on ω, we can refer to elements of A as natural
numbers keeping in mind that each number n represents the equivalence class
(that is, an element of A). Thus, n can be regarded as either an element of A,
representing the equivalence class containing n, or the natural number n. The
meaning which we use will be clear from the content. Sometimes we denote
elements of A by [n], with [n] representing the equivalence class containing the
number n.
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2 Failing non-computable Σ0
1-presentations

This section is for completeness and the main theorem is from [8]. However,
we provide more applications of the theorem in order to contrast Σ0

1 and Π0
1-

presentations of algebras in the last section.

Let A and B be Σ0
1-algebras. A homomorphism h from the algebra A into the

algebra B is called a computable homomorphism if there exists a computable
function f : ω → ω such that h is induced by f . In other words, for all n ∈ ω,
we have h([n]) = [f(n)]. We call f a representation of h. Clearly, if h is a
computable homomorphism then its kernel, that is, the set {(n,m) | h([n]) =
h([m])}, is computably enumerable. We say that h is proper if there are distinct
[n] and [m] in A whose images under h coincide. In this case the image h(A) is
called a proper homomorphic image of A.

Our goal is to give a syntactic characterization of Σ0
1-algebras that are com-

putable. Let A be a Σ0
1-algebra. A fact is a computably enumerable conjunction

&i∈ωφi(c̄) of sentences, where each φi(c̄) is of the form ∀x̄ψi(x̄, c̄) with ψi(x̄, c̄)
being a negative atomic formula. Call non-computable Σ0

1-algebras properly

Σ0
1. For example, any finitely generated algebra with undecidable equality prob-

lem is properly Σ0
1.

Definition 3. An algebra A preserves the fact &i∈ωφi(c̄) if A satisfies the
fact and there is a proper homomorphic image of A in which the fact is true.

The theorem below tells us that properly Σ0
1-algebras possess many homo-

morphisms which are well behaved with respect to the facts true in A.

Theorem 1. A Σ0
1-algebra A is properly Σ0

1 if and only if A preserves all facts

true in A.

Proof. Assume that A is a computable algebra. We can make the domain
of A to be ω. Thus, in the algebra A, the fact &i6=j(i 6= j) is clearly true. This
fact cannot be preserved in any proper homomorphic image of A.

For the other direction, we first note the following. Given elements m and
n of the algebra, it is possible to effectively enumerate the minimal congruence
relation, denoted by η(m,n), of the algebra which contains the pair (m,n). Now
note that if [m] = [n] then η(m,n) is the equality relation in A. Denote A(m,n)
the factor algebra obtained by factorizing A by η(m,n). Clearly, A(m,n) is
computably enumerable.

Now assume that A is properly Σ0
1-algebra and &i∈ωφi(c̄) is a fact true

in A which cannot be preserved. Hence, for any m and n in the algebra, if
[m] 6= [n] then in the factor algebra A(m,n), the fact &i∈ωφi(c̄) cannot be
satisfied. Therefore, for given m and n, there exists an i such that in the
factor algebra A(m,n) the sentence ¬φi(c̄) is true. Now the sentence ¬φi(c̄) is
equivalent to an existential sentence quantified over a positive atomic formula.
Note that existential sentences quantified over positive atomic formulas true in
A(m,n) can be computably enumerated. Hence, in the original algebra A, for
all m and n, either [m] = [n] or there exists a an i such that ¬φi(c̄) is true in
A(m,n). This shows that the equality relation in A is computable, contradicting
the assumption that A is a properly Σ0

1-algebra. The theorem is proved.

There are several interesting corollaries of the theorem above.
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Corollary 1. If A is properly computably enumerable then any two distinct

elements m and n in A can be homomorphically mapped into distinct elements

in a proper homomorphic image of A.

Indeed, take the fact m 6= n true in A, and apply the theorem.

Call two homomorphic images h1(A) and h2(A) of algebra A distinct if
congruences induced by h1 and h2 are different.

Corollary 2. If A is properly computably enumerable then any fact true in A
is true in infinitely many distinct homomorphic images of A. In particular, A
cannot have finitely many congruences.

Proof. Let φ be a fact true in A. By theorem above, there is a homomorphic
image h1(A) in which φ is true, and distinct elements m1 and n1 in A for which
h1(m1) = h1(n1). Now consider the fact φ&(m1 6= n1), and apply the theorem
to this fact. There is a homomorphic image h2(A) in which φ&(m1 6= n1) is
true, and distinct elements m2 and n2 in A for which h2(m2) = h(n2). Now
consider the fact φ&(m1 6= n1)&(m2 6= n2), and apply the theorem to this fact.
The corollary now follows by induction. The corollary is proved.

This theorem can now be applied to provide several algebraic conditions for
computable algebras not to have properly Σ0

1-presentations.

Corollary 3. In each of the following cases an infinite computably enumerable

algebra A is computable:

1. There exists a c.e. sequence (xi, yi) such that [xi] 6= [yi] for all i, and for

any non-trivial congruence relation η there is (xj , yj) for which ([xj ], [yj ]) ∈
η.

2. A has finitely many congruences.

3. A is finitely generated and every non-trivial congruence relation of A has

a finite index.

4. No computable field has a properly Σ0
1-presentation.

5. No finitely generated computable algebra has a a properly Σ0
1-presentation.

Proof. For Part 1), we see that the fact &i∈ω[xi] 6= [yi] is true in A. The
assumption states that this fact cannot be preserved in all proper homomorphic
images of A. Hence A must be a computable algebra by the theorem above. For
part 2), let η0,. . .,ηk be all non-trivial congruences of A; for each ηi take (xi, yi)
such that [xi] 6= [yi] and ([xi], [yi]) ∈ ηi. Then the fact &i≤k([xi] 6= [yi]) is true
in A but cannot be preserved in all proper homomorphic images of A. Thus A
is a computable algebra. For Part 3), consider any two elements [m] and [n] in
A and consider the congruence relation η([m], [n]) defined in the proof of the
theorem. By assumption, [m] 6= [n] iff the algebra A(m,n) is finite. The set
X = {(m,n) | A(m,n) is finite } is computably enumerable. Hence, the fact
&(m,n)∈X([m] 6= [n]) is true in A but cannot be preserved in any homomorphic
image of A. For part 4), consider a computable field F = (F ; +,×, 0, 1). This
algebra has only two congruence relations (both are trivial). Hence by Part 2)
F does not have a proper Σ0

1-presentation. For the last part assume that A is
computable and a finitely generated algebra. Let a1, . . . , an be the generators.
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Note that for any element b ∈ A there exists a term tb over the generating set
{a1, . . . , an} whose value in A equals b. Consider the following fact &b6=ctb 6= tc.
Clearly this facts is true in the algebra but can’t be preserved in all proper
homomorphic images of A. Hence all Σ0

1-presentations of A fail to be non-
computable. The corollary is proved.

Note that from the corollary above finitely generated term algebras, the
arithmetic, and infinite computable fields fail to possesses non-computable Σ0

1-
presentations. The last section shows that all these algebras possess non-compu-
table Π0

1-presentation.

3 Term-Separable algebras

In this section we define term-separable algebras and provide several examples
of such algebras.

Definition 4. Let A = (A, f1, . . . , fr) be an algebra. We say that A is term-

separable if for every finite set of terms {t1(x, y), . . . , tn(x, y)} with parameters
from A, every J ⊆ {1, . . . , n}2 and every a ∈ A the following holds:

A �
∧

〈k,l〉∈J

tk(a, a) 6= tl(a, a) −→

∃b1 ∃b2 (b1 6= b2) ∧
∧

〈k,l〉∈J

tk(b1, b2) 6= tl(b1, b2).

Proposition 1. Let A be an infinite algebra and for every two terms t1(x) and

t2(x) with parameters from A the set {a ∈ A : A � t1(a) = t2(a)} is either finite

or equals A. Then A is term-separable.

Proof. Consider a set of terms t1(x, y), . . . , tn(x, y) with parameters from
A, and a set J ⊆ {0, . . . , n}2 such that

A �
∧

〈k,l〉∈J

tk(a, a) 6= tl(a, a).

Consider the terms t1(x, a), . . . , tn(x, a). For each 〈k, l〉 ∈ J let Bk,l = {b ∈
A : A � tk(b, a) = tl(b, a))}. Since a /∈ Bk,l, Bk,l is finite. Then there exists
b ∈ A \

⋃
〈k,l〉∈J

Bk,l such that b 6= a. Hence,

A �
∧

〈k,l〉∈J

tk(b, a) 6= tl(b, a).

The proposition is proved.
In the next proposition we provide several examples of term-separable alge-

bras.

Proposition 2. The following infinite algebras are term-separable:

1. The arithmetic (ω, S,+,×).

2. The term algebra generated with the generator set X.
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3. Any infinite field.

4. Any torsion-free abelian group.

5. Any infinite vector space over finite field.

Proof. For the arithmetic and infinite computable field, every term t(x)
with parameters is equivalent to polynomial with coefficients from the set of
natural number or from the field respectively. Every non-zero polynomial has
only finitely many zeros. Hence, the condition of proposition 1 holds and this
algebras are term-separable. For part 2), consider two terms t1(x) and t2(x)
such that A � t1(a) 6= t2(a) for some a ∈ A. Therefore, terms t1(a) and
t2(a) differ syntactically and, hence, t1(x) and t2(x) differ syntactically. So,
A � ∀b t1(b) 6= t2(b) and term algebra is term-separable. For part 4), any term
t(x) is equal to the expression nx + a, where n ∈ Z and a ∈ A. Since the
group is torsion-free, the equation t(x) = 0 has at most one solution if n 6= 0 or
a 6= 0. Proof for the case of vector spaces is similar to above. The proposition
is proved.

4 Admitting non-computable Π0
1-presentations

This section is devoted to the proof of the following result.

Theorem 2. Let A = (A; f0, . . . , fr) be computable term-separable algebra and

d be any c.e. Turing degree. Then A possesses a Π0
1-presentation of degree d.

In particular, it possesses a non-computable Π0
1-presentation.

Proof. We will construct required Π0
1-presentation of A step-by-step. At

the end of step s we have a number ns and a collection of finite sets {Cs
i }i∈ω such

that Cs
i 6= ∅ for i 6 ns, and Cs

i = ∅ for i > ns. Also we have partial functions
h1, . . . , hr with dom(hi) ⊆ (∪i∈ωC

s
i )mi and range(hi) ⊆ ∪i∈ωC

s
i , where mi is

the arity of fi. Each hi has the following property: if 〈c1j , c
2
j 〉 ∈ ηs for all j 6 mi,

then 〈hi(c̄
1), hi(c̄

2)〉 ∈ ηs, where

∀ x, y ∈ ∪i∈ωC
s
i 〈x, y〉 ∈ ηs ⇐⇒ ∃ i {x, y} ⊆ Cs

i .

Furthermore, if t1(c̄1) and t2(c̄2) are terms constructed from the functions
h1, . . . , hr with c̄1, c̄2 ∈ ∪i∈ωC

s
i that differ syntactically then their values are

also different, provided that they are both defined.

Call g ∈ ∪i∈ωC
s
i a ground element if for every term t(x̄), constructed from the

functions h1, . . . , hr, such that t(x̄) is not equal to some variable x or constant
c, g 6= t(c̄) for every tuple c̄ ∈ ∪i∈ωC

s
i . Note that for every d ∈ ∪i∈ωC

s
i , there

exists a unique term t(c̄), constructed from the functions h1, . . . , hr, with a tuple

c̄ of ground elements, such that d = t(c̄). We denote this term by d̃. Note that
if g is a ground element then g̃ = g.

For each i 6 ns, we have a triple of ground elements ai, bi, ei that are all
distinct. Initially {ai, bi, ei} ⊆ Cs

i , but in some subsequent step ai and bi may
move to other sets Cs

j , Cs
k, while ei is always in Cs

i to ensure that this set will
never be empty.

Also the mapping ψs : i −→ Cs
i gives us a partial isomorphism between

A∩{0, . . . , ns} and {Cs
i }i6ns

in the following sense: for all i 6 r, for every tuple

8



a1, . . . , ami
∈ {0, . . . , ns}, and for every tuple c1, . . . , cmi

, such that cj ∈ Cs
aj

, if
hi(c̄) is defined then fi(ā) 6 ns and hi(c̄) ∈ Cs

fi(ā).

Define a function gs : ∪Cs
i −→ ω, such that gs(a) = i, if a ∈ Cs

i . Let D
be a c.e. set in degree d and Ds denotes the elements enumerated in D by the
step s. When we add a new element during the construction, we always take
the least number that has not been used so far.

Step 0. Let C0
0 = {a0, b0, e0} and n0 = 0.

Step s+1. This step has three substeps. At the end of substep l (l = 1, 2, 3)

we will have constructed the sets Cs,l
i .

Case A. If for all i 6 ns, i /∈ Ds or gs(ai) 6= gs(bi), then

1) Let ns+1 = ns + 1 and Cs,1
i = Cs

i for i 6 ns+1.

2) Put new (ground) elements ans+1
, bns+1

, ens+1
to Cs,2

ns+1
and let Cs,2

i = Cs,1
i

for i 6 ns.

3) For every i 6 r, every tuple a1, . . . , ami
∈ {0, . . . , ns+1}, such that fi(ā) 6

ns+1, and every tuple c1, . . . , cmi
, such that cj ∈ Cs,2

aj
, if hi(c̄) has not been

yet defined then add a new element to Cs,3
fi(ā) and declare it to be the value

of hi(c̄).

Let Cs+1
i = Cs,3

i for all i 6 ns+1.
Case B. If the condition of case A does not hold then take the least i with

the property i ∈ Ds and gs(ai) = gs(bi) = i. Consider the set

D = {t(c̄) : ∃ d ∈ ∪Cs
i such that d̃ = t(c̄)}.

If t(c̄) ∈ D then let t∗(x, y) be a term obtained from t(c̄) by replacing each
occurrence of ai with x, each occurrence of bi with y, every parameter c with
gs(c), and every functional symbol hi with fi. For example, the terms t1 = ai

and t2 = bi are in D. Then t∗1 = x and t∗2 = y.
Let D = {t1(c̄1), . . . , tn(c̄n)} and J = {〈k, l〉 : A � t∗k(i, i) 6= t∗l (i, i)}. By

assumption of the theorem there exist j1 6= j2 such that

A �
∧

〈k,l〉∈J

t∗k(j1, j2) 6= t∗l (j1, j2).

Note that we can effectively find the minimal pair of elements with this property
because A is computable. Now,

1) Move every d = t(c̄) ∈ ∪Cs
i to the set Cs,1

k , where k = t∗(j1, j2). In particu-

lar, note that ai is moved to Cs,1
j1

and bi is moved to Cs,1
j2

. Let ns+1 be the

maximal i such that Cs,1
i 6= ∅.

2) For each ns < i 6 ns+1, put new elements ai, bi, ei to Cs,2
i and let Cs,2

i = Cs,1
i

for i 6 ns.

3) For every i 6 r, every tuple a1, . . . , ami
∈ {0, . . . , ns+1}, such that fi(ā) 6

ns+1, and every tuple c1, . . . , cmi
, such that cj ∈ Cs,2

aj
, if hi(c̄) has not been

yet defined then add a new element to Cs,3
fi(ā) and declare it to be the value

of hi(c̄).
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Let Cs+1
i = Cs,3

i for all i 6 ns+1. This concludes the step s+ 1.
The following lemmas describe some properties of this construction.

Lemma 1. For all s and every c, d ∈ ∪Cs
i , if gs(c) 6= gs(d) then gs+1(c) 6=

gs+1(d).

Proof. Let c̃ = t1(c̄1) and d̃ = t2(c̄2). If we don’t split any pair {ai, bi}
at the step s + 1, then clearly gs+1(c) = gs(c) 6= gs(d) = gs+1(d). Suppose
that we split {ai, bi} at the step s + 1. Consider the terms t∗1(x, y), t

∗
2(x, y).

Then gs+1(c) = t∗1(j1, j2) and gs+1(d) = t∗2(j1, j2). Since t∗1(i, i) = gs(t1(c̄1)) =
gs(c) 6= gs(d) = gs(t2(c̄2)) = t∗2(i, i) and we choose j1 6= j2 such that they
preserve inequality, we have gs+1(c) 6= gs+1(d). The lemma is proved.

Lemma 2. For all s, ns < ns+1.

Proof. If we don’t split any pair {ai, bi} at the step s+1, then ns+1 = ns+1.
Suppose that we split some {ai, bi} at this step. For each j 6 ns, consider a
ground element ej ∈ Cs

j . Also consider ground elements ai, bi from Cs
i . By our

construction ej ∈ Cs+1
j for all j 6 ns, and ai ∈ Cs+1

j1
, bi ∈ Cs+1

j2
. If j1 or j2 is

less than or equal to ns, then it equals i. Since j1 6= j2, it is impossible that
j1, j2 6 ns. Hence, j1 > ns or j2 > ns and, therefore, ns+1 > ns. The lemma is
proved.

Lemma 3. For every i 6 r and every mi-tuple c̄, there exists a step s at which

hi(c̄) is defined. Hence hi is a total computable function.

Proof. Take some s0 such that c̄ ∈ ∪Cs0

i . Let c̄ = c1, . . . , cmi
and consider

the terms c̃j = tj(d̄j), j 6 mi. Take minimal n such that all tuples d̄j , j 6 mi,
of ground elements belong to the set {a0, b0, e0, . . . , an, bn, en}. Take s1 > s0
such that after step s1 we do not split any pair {ai, bi}, i 6 n. This means that
for all s > s1, gs(cj) = gs1

(cj). Let gs1
(cj) = aj and take s2 > s1 such that

fi(ā) 6 ns2
. Such s2 exists by lemma 2. Now, if hi(c̄) has not been yet defined

then, since cj ∈ Cs2
aj

and fi(ā) 6 ns2
, we will define hi(c̄) at this step. The

lemma is proved.

Now, take any d ∈ N and consider the term d̃ = t(c̄). There exists a step s0
after which we do not split any pair {ai, bi} of ground elements, such that ai ∈ c̄
or bi ∈ c̄. Then gs(d) = gs0

(d) for all s > s0. This means that there exists a
g(d) = lims gs(d). Let Ci = {d : g(d) = i}. Note that Ci 6= ∅ because ei ∈ Ci.

Lemma 4. At each step s the following properties hold:

(i) for every i 6 r and every mi-tuples c̄1 and c̄2, such that gs(c̄
1) = gs(c̄

2),
if hi(c̄

1) and hi(c̄
2) are both defined then gs(hi(c̄

1)) = gs(hi(c̄
2)),

(ii) ψs : i −→ Cs
i is a partial isomorphism between A ∩ {0, . . . , ns} and

{Cs
i }i6ns

.

Proof. First, note that (ii) implies (i). Now, prove (ii) by induction on s.
It suffices to prove the following statement:

for every i 6 r, every mi-tuple ā and every mi-tuple c̄, such that
cj ∈ Cs,1

aj
, if hi(c̄) is defined then fi(ā) 6 ns+1 and hi(c̄) ∈ Cs,1

fi(ā).
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This is because, when we put new elements to Cs,2
i or Cs,3

i , we do it according
to partial isomorphism.

If we do not split any pair of ground elements at the step s+ 1, then there
is nothing to prove. Suppose that we split {ai, bi} at this step. Then we move

every d such that d̃ = t(c̄) to the set Cs,1
k , where k = t∗(j1, j2).

Take anymi-tuple c̄ such that cj ∈ Cs,1
aj

and hi(c̄) is defined. Let c̃j = tj(ūj).
Then by construction aj = t∗j (j1, j2). So, we have

gs+1(hi(c̄)) = gs+1(hi(t1(ū1), . . . , tmi
(ūmi

))) =

fi(t
∗
1(j1, j2), . . . , t

∗
mi

(j1, j2)) = fi(ā).

Also note that fi(ā) 6 ns+1 by the choice of ns+1. The lemma is proved.

Consider a relation η defined as follows:

〈x, y〉 ∈ η ⇐⇒ g(x) = g(y).

Lemma 5. η is a congruence relation on (N, h1, . . . , hr) and (N, h1, . . . , hr)/η
is isomorphic to A.

Proof. Obviously, η is an equivalence relation. Now, take any hi and two
mi-tuples c̄1 and c̄2 such that g(c̄1) = g(c̄2). Take s0 such that hi(c̄

1) and hi(c̄
2)

are defined at step s0 and

∀s > s0 gs(c̄
1) = g(c̄1) & gs(c̄

2) = g(c̄2) &

gs(hi(c̄
1)) = g(hi(c̄

1)) & gs(hi(c̄
2)) = g(hi(c̄

2)).

From lemma 4(i) it follows that ∀s > s0 gs(hi(c̄
1)) = gs(hi(c̄

2)) and, hence,
g(hi(c̄

1)) = g(hi(c̄
2)). So, η is a congruence.

Recall that Ci = {d : g(d) = i}. Now, prove that the mapping ψ : i −→ Ci

gives us an isomorphism between A and (N, h1, . . . , hr)/η. Take any mi-tuple ā
and mi-tuple c̄ such that g(c̄) = ā. We need to prove that g(hi(c̄)) = fi(ā).

Take s0 such that hi(c̄) is defined at step s0 and

∀s > s0 gs(c̄) = g(c̄) and gs(hi(c̄)) = g(hi(c̄)).

From lemma 4(ii) it follows that gs(hi(c̄)) = fi(ā) for all s > s0. Hence,
g(hi(c̄)) = fi(ā). The lemma is proved.

Lemma 6. η is Π0
1 relation whose Turing degree is d.

Proof. Show that N
2 \ η is Σ0

1. We have

〈x, y〉 /∈ η ⇐⇒ g(x) 6= g(y) ⇐⇒ ∃s (x, y ∈ ∪Cs
i & gs(x) 6= gs(y)),

where the second equivalence follows from lemma 1. Hence, η is Π0
1.

Now, prove that the degree of η is d. From the construction of theorem 2 it
follows that i ∈ D iff 〈ai, bi〉 /∈ η and, therefore, D 6T η. Show that η 6T D.
Take any two numbers x, y and find the least s such that x, y ∈ ∪i6ns

Cs
i . Let

x̃ = t1(d̄1) and ỹ = t2(d̄2), where d̄1, d̄2 ∈ {a0, b0, c0, . . . , ans
, bns

, cns
}. Find the

least s1 > s such that we have split all pairs {ai, bi} for i ∈ D ∩ {0, . . . , ns} by
the step s1. Then 〈x, y〉 ∈ η iff gs1

(x) = gs1
(y). The lemma is proved.

Thus, we have proved the theorem.

This theorem and the proposition 2 together give us the following examples
of computable algebras that admit non-computable Π0

1-presentations.
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Corollary 4. The following algebras possess non-computable Π0
1-presentations:

1. The arithmetic (ω, S,+,×).

2. The term algebra generated with the generator set X.

3. Any infinite computable field (F,+,×, 0, 1).

4. Any computable torsion-free abelian group.

5. Any infinite computable vector space over finite field.
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