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1 Introduction

An important theme in computable model theory is the study of computable mod-

els of complete first-order theories. More precisely, given a complete first-order

theory T , one would like to know which models of T have computable copies and

which do not. A special case of interest is when T is an ℵ1-categorical theory. In

this paper we are interested in computable models of ℵ1-categorical theories, and

we always assume that these theories are not ℵ0-categorical. In addition, since we

are interested in computable models, all the structures in this paper are countable.

We assume that all languages we consider are computable. A complete theory T

in a language L is ℵ1-categorical if any two models of T of power ℵ1 are isomorphic.

We say that a model A of T is computable if its domain and its atomic diagram

are computable. A model A is computably presentable if it is isomorphic to a

computable model, which is called a computable presentation of A. The reader is

referred to [2] for the basics of computable model theory and to [12] for the basics

of computability theory.

In [1], Baldwin and Lachlan developed the theory of ℵ1-categoricity in terms of

strongly minimal sets. They showed that the countable models of an ℵ1-categorical

theory T can be listed in an ω + 1 chain

A0 4 A1 4 · · · 4 Aω,

where the embeddings are elementary, A0 is the prime model of T , and Aω is the

saturated model of T . Based on the theory developed by Baldwin and Lachlan,

Harrington [4] and N. G. Khisamiev [5] proved that if an ℵ1-categorical theory T

is decidable then all the countable models of T have computable presentations.

Thus, for decidable ℵ1-categorical theories the question of which models of T have

computable presentations is fully settled. However, the situation is far from clear

when the theory T is not decidable. The following definition is given in [9]:

1.1 Definition. Let T be an ℵ1-categorical theory and let A0 4 A1 4 · · · 4 Aω

be the countable models of T . The spectrum of computable models of T is the set

{i : Ai has a computable presentation}.

If X ⊆ ω + 1 is the spectrum of computable models of some ℵ1-categorical

theory, then we say that X is realized as a spectrum.

There has been some previous work on the possible spectra of computable mod-

els of (undecidable) ℵ1-categorical theories. For example, Nies [11] gave an upper
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bound of Σ0
3(∅ω) for the complexity of the sets realized as spectra. Interestingly,

the following are the only subsets of ω + 1 known to be realizable as spectra: the

empty set, ω + 1 itself ([4], [5]), the initial segments {0, . . . , n}, where n ∈ ω

([3], [10]), the sets (ω + 1) \ {0} and ω ([9]), and the intervals {1, . . . , n}, where

n ∈ ω ([11]). Our main result adds {ω} to this list by showing that there exists an

ℵ1-categorical theory whose only computably presentable model is the saturated

one.

This paper is organized as follows. The next section contains the proof of a

computability-theoretic result that will be used in constructing the desired theory.

In section 3 we introduce the basic building blocks of the models of this theory,

which are called cubes. Finally, the last section contains the proof our main result.

2 A Computability-Theoretic Result

Limitwise monotonic functions were introduced by N. G. Khisamiev [6, 7, 8] and

have found a number of applications in computable model theory. In particular,

Khoussainov, Nies, and Shore [9] used them to show that (ω + 1) \ {0} is realized

as a spectrum. We now introduce a related notion.

Let [ω]<ω denote the collection of all finite sets of natural numbers, and let ∞

be a special symbol. We define the class of S-limitwise monotonic functions from

ω to [ω]<ω ∪ {∞}, where S is an infinite set. This class captures the idea of a

family A0, A1, . . . of uniformly c.e. sets, each of which is either finite or equal to S

(represented by the symbol ∞), such that we can enumerate the set of i for which

Ai = S.

2.1 Definition. Let S be an infinite set of natural numbers. An S-limitwise

monotonic function is a function f : ω → [ω]<ω ∪ {∞} for which there is a

computable function g : ω × ω → [ω]<ω ∪ {∞} such that

1. f(n) = lims g(n, s) for all n, and

2. for all n, s ∈ ω, the following properties hold:

(a) if g(n, s + 1) 6= ∞ then g(n, s) ⊆ g(n, s + 1),

(b) if g(n, s) = ∞ then g(n, s + 1) = ∞, and
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(c) if g(n, s) 6= ∞ and g(n, s + 1) = ∞ then g(n, s) ⊂ S.

We refer to g as a witness to f being S-limitwise monotonic.

Note that if f is an S-limitwise monotonic function then its witness g can be

chosen to be primitive recursive.

2.2 Definition. A collection of finite sets is S-monotonically approximable if it is

equal to {f(n) : f(n) 6= ∞} for some S-limitwise monotonic function f .

The main result of this section is the following computability-theoretic propo-

sition, which shows that there is an infinite set S and a family of sets that is

not S-monotonically approximable and has certain properties that will allow us to

code it into a model of an ℵ1-categorical structure.

2.3 Proposition. There exists an infinite c.e. set S and uniformly c.e. sets

A0, A1, . . . with the following properties:

1. each Ai is either finite or equal to S,

2. if x ∈ S then x ∈ Ai for almost all i,

3. if x /∈ S then x ∈ Ai for only finitely many i,

4. if Ai is finite then there is a k ∈ Ai such that k /∈ Aj for all j 6= i, and

5. {Ai : |Ai| < ω} is not S-monotonically approximable.

Proof. Let g0, g1, . . . be an effective enumeration of all primitive recursive functions

from ω × ω to ω<ω ∪ {∞} such that for all n, s ∈ ω, if ge(n, s + 1) 6= ∞ then

g(n, s) ⊆ g(n, s + 1), and if g(n, s) = ∞ then g(n, s + 1) = ∞.

We want to build S and A0, A1, . . . to satisfy 1–3 and the requirements Re

stating that if ge is a witness to some function f being S-limitwise monotonic,

then {Ai : |Ai| < ω} is not S-monotonically approximable via f .

For each e, we define a procedure for enumerating Ae. We think of the proce-

dures as alternating their steps, with the eth procedure taking place at stages of

the form 〈e, k〉, which we call e-stages. All procedures may enumerate elements

into S. The eth procedure is designed to satisfy Re by ensuring that if ge is a

witness to some function f being S-limitwise monotonic and every f(n) 6= ∞ is

4



equal to some Ai, then Ae is finite and not equal to f(n) for any n. The eth

procedure works as follows.

Let Ae[s] and S[s] denote the set of all numbers enumerated into Ae and S,

respectively, by the end of stage s.

The main idea is to find an appropriate number ne such that if lims ge(n, s) = Ae

for some n then n = ne, and let Ae[s] always contain an element not in ge(ne, s),

thus ensuring that either Ae is finite but lims ge(ne, s) 6= Ae or ge(ne, s) is eternally

playing catch-up, and hence does not come to a limit.

At the first e-stage s, put 〈e, 0〉, 〈e, 1〉, and all elements of S[s] into Ae. Let

me,s = 1 and let ne be undefined. (For each e-stage t, we will let me,t be the largest

m such that 〈e, m〉 ∈ Ae[t].)

At any other e-stage s, proceed as follows. Let t be the previous e-stage. If ne

is undefined and there is an n 6 s such that ge(n, s) = Ae[t], then let ne = n. If ne

is now defined and ge(ne, s) = Ae[t] then put 〈e, me,t − 1〉 into S, put 〈e, me,t + 1〉

and all elements of S[s] into Ae, and let me,s = me,t +1. Otherwise, let me,s = me,t

and do nothing else.

This finishes the description of the eth procedure. Running all procedures con-

currently, as described above, we build a uniformly c.e. collection of sets A0, A1, . . .

and a c.e. set S. Now our goal is to show that these sets satisfy the properties in

the statement of the proposition.

Since at every stage s at which we put numbers into Ae, we put S[s] into Ae

and the second largest element of Ae[s − 1] into S, every infinite Ae is equal to S.

This shows that the first property in the proposition holds.

Since for each e we put S[s] into Ae, where s is the first e-stage, every element of

S is in cofinitely many Ae. This shows that the second property in the proposition

holds.

Since the only way a number of the form 〈e, k〉 can enter Ai for i 6= e is if it

first enters S, every number that is in infinitely many Ai must be in S. This shows

that the third property in the proposition holds.

If Ae is finite, then m = lims me,s exists, and 〈e, m〉 is in Ae but not in Aj for

j 6= e. This shows that the fourth property in the proposition holds.

We now show that the last property in the proposition holds. Assume for a

contradiction that {Ai : |Ai| < ω} = {f(n) : f(n) 6= ∞} for some S-limitwise

monotonic function f witnessed by ge. Then ne must eventually be defined, since
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otherwise Ae is finite but not in the range of f .

First suppose that f(ne) 6= ∞. At the e-stage s0 at which ne is defined,

ge(ne, s0) contains 〈e, 0〉 and 〈e, 1〉. If there is no e-stage s1 > s0 at which

ge(ne, s1) = Ae[s0], then f(ne) cannot equal any of the Ai, since Ae is then the only

one of our sets that contains 〈e, 1〉, and 〈e, 1〉 ∈ ge(ne, s0). So there must be such

an e-stage s1. Note that ge(ne, s1) contains 〈e, 2〉. By the same argument, there

must be an e-stage s2 > s1 such that ge(ne, s2) = Ae[s1], and this set contains

〈e, 3〉. Proceeding in this way, we see that ge(ne, s) never reaches a limit.

Now suppose that f(ne) = ∞. Let s0 be the least s such that ge(ne, s) = ∞,

and let t be the largest e-stage less than s0. It is easy to check that 〈e, me,t − 1〉 ∈

g(ne, t) but 〈e, me,t − 1〉 /∈ S[t]. We never put 〈e, me,t − 1〉 into S after stage t, so

in fact 〈e, me,t − 1〉 /∈ S. Since ge(ne, t) ⊆ ge(ne, s0−1), we have ge(ne, s0−1) 6⊂ S,

contradicting the choice of ge.

3 Cubes

In this section we introduce a special family of structures, which we call cubes.

These will be used in the next section to build an ℵ1-categorical theory. They

generalize the n-cubes and ω-cubes used in [9].

We work in the language L = {Pi : i ∈ ω}, where each Pi is a binary predicate

symbol. We will define structures for sublanguages L′ of L. Any such structure

can be thought of as an L-structure by interpreting the Pi not contained in L′

by the empty set. We denote the domain of a structure denoted by a calligraphic

letter such as A by the corresponding roman letter A.

We begin with the following inductive definition of the finite cubes.

3.1 Definition. Base case. For n ∈ ω, an (n)-cube is a structure A = ({a, b}; PA
n ),

where PA
n (x, y) holds if and only if x 6= y.

Inductive Step. Now suppose we have defined σ-cubes for a non-repeating

sequence σ = (n1, . . . , nk), and let nk+1 /∈ σ. An (n1, . . . , nk, nk+1)-cube is a

structure C defined in the following way. Take two σ-cubes A and B such that

A ∩ B = ∅ and let f : A → B be an isomorphism. Let C be the structure

(A ∪ B; PA
n1

∪ P B
n1

, . . . , PA
nk

∪ P B
nk

, P C
nk+1

),

where P C
nk+1

(x, y) holds if and only if f(x) = y or f−1(x) = y.
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3.2 Example. Let σ be a finite non-repeating sequence. Consider A = Z
|σ|
2 as

a vector space over Z2, with basis b1, . . . , b|σ|. If we define the structure A with

domain A by letting PA
σ(i)(x, y) iff x + bi = y, then A is a σ-cube.

The following property of finite cubes, which is easily checked by induction,

shows that we could have taken Example 3.2 as the definition of a σ-cube.

3.3 Lemma. Let σ be a finite non-repeating sequence. Any two σ-cubes are iso-

morphic.

Furthermore, we have the following stronger property.

3.4 Lemma. If σ is a finite non-repeating sequence and τ is a permutation of σ,

then every τ -cube is isomorphic to every σ-cube.

Proof. Let A and B be a σ-cube and a τ -cube respectively. By Lemma 3.3, we can

assume that A and B are constructed as in Example 3.2. Since τ is a permutation

of σ, there is a bijection f such that σ(i) = τ(f(i)). Let ϕ be the vector space

isomorphism induced by taking bi to bf(i). We then have

PA
σ(i)(x, y) iff x + bi = y iff ϕ(x) + ϕ(bi) = ϕ(y)

iff ϕ(x) + bf(i) = ϕ(y) iff P B
τ(f(i))(ϕ(x), ϕ(y)) iff P B

σ(i)(ϕ(x), ϕ(y)).

Thus ϕ is an isomorphism from A to B.

So instead of “σ-cube”, where σ = (n1, . . . , nk), we will write “A-cube”, where

A = {n1, . . . , nk}. (This notation matches that of [9], if we make the usual set-

theoretic identification of n with {0, . . . , n − 1}.)

We now define infinite cubes.

3.5 Definition. Let α = (n0, n1, . . .) be an infinite non-repeating sequence of

natural numbers. An α-cube is a structure of the form
⋃

i∈ω Ai, where each Ai is

an {n0, . . . , ni}-cube, and Ai ⊂ Ai+1.

As with finite sequences, the order of an infinite sequence α does not affect the

isomorphism type of α-cubes, so we can talk about S-cubes, where S is an infinite

set. To show that this is the case, we will use the following fact, which is easy

to check. Suppose that A ⊂ B ⊂ C are finite, Z is a C-cube, and X ⊂ Z is an

A-cube. Then there exists a B-cube Y such that X ⊂ Y ⊂ Z.
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3.6 Lemma. If σ is an infinite non-repeating sequence and τ is a permutation of

σ, then every τ -cube is isomorphic to every σ-cube.

Proof. Let σ = (m0, m1, . . .) be an infinite non-repeating sequence, and let τ =

(n0, n1, . . .) be a permutation of σ. Let si = {m0, . . . , mi} and ti = {n0, . . . , ni}.

Let A be a σ-cube and let B be a τ -cube. Then A =
⋃

i∈ω Ai, where each Ai

is an si-cube, and Ai ⊂ Ai+1. Similarly, B =
⋃

i∈ω Bi, where each Bi is a ti-cube,

and Bi ⊂ Bi+1.

We build a sequence of finite partial isomorphisms ϕ0 ⊆ ϕ1 ⊆ · · · such that

Ai ⊆ dom ϕ2i+1 and Bi ⊆ rng ϕ2i+2. We begin with ϕ0 = ∅.

Given ϕ2i, let k > i be such that Ak ⊇ dom ϕ2i, and let l be such that Bl ⊇

rng ϕ2i and sk ⊆ tl. Then there is an sk-cube C ⊆ Bl such that rng ϕ2i ⊆ C.

Extend ϕ2i to an isomorphism ϕ2i+1 : Ak → C.

Given ϕ2i+1, proceed in an analogous fashion to define a finite partial isomor-

phism ϕ2i+2 including Bi in its range.

Now ϕ =
⋃

i∈ω ϕi is an isomorphism from A to B.

4 The Main Theorem

In this section we prove the main result of this paper.

4.1 Theorem. There exists an ℵ1-categorical but not ℵ0-categorical theory whose

only computably presentable model is the saturated one.

Proof. Let {Ai}i∈ω and S be as in Proposition 2.3. Fix an enumeration of {Ai}i∈ω

such that at each stage exactly one element is enumerated into some Ai. (For

instance, we can take the enumeration given in the proof of Proposition 2.3.)

Construct a computable model Mω =
⋃

n∈ω M
n
ω as follows. Begin with Mn

ω[0] = ∅

for all n. At stage s+1, if An[s+1] 6= An[s] then extend Mn
ω[s] to an An[s+1]-cube

using fresh large numbers.

It is clear that this procedure can be carried out effectively, so that Mω is

computable. Furthermore, Mω is the disjoint union of one An-cube for each n ∈ ω.

In particular, every infinite cube in Mω is an S-cube.

Now let T = Th(Mω) be the first-order theory of Mω. We show that T is

ℵ1-categorical but not ℵ0-categorical, Mω is saturated, and the only computably

presentable model of T (up to isomorphism) is Mω.
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We begin by showing that that T is ℵ1-categorical. Since T includes sentences

saying that for each n and x there is at most one y such that Pn(x, y), we are free

to use functional notation and write Pn(x) = y instead of Pn(x, y). For n ∈ S,

let k(n) be the number of elements x ∈ Mω for which PMω

n (x) is not defined. For

n /∈ S, let k(n) be the number of elements x ∈ Mω for which PMω

n (x) is defined.

Note that k(n) is finite for all n.

It is easy to see that Mω satisfies the following list of statements, which can

be written as an infinite set Σ ⊂ T of first-order sentences:

1. For each n, the relation Pn is a partial one-to-one function and Pn(x) = y →

Pn(y) = x.

2. For all n 6= m and all x, we have Pn(x) 6= Pm(x) and Pn(x) 6= x.

3. For all n 6= m and all x, if Pn(x) and PmPn(x) are defined, then Pm(x) and

PnPm(x) are defined, and PnPm(x) = PmPn(x).

4. For all k, all n > n1 > n2 > · · · > nk, and all x, we have Pn1
. . . Pnk

(x) 6=

Pn(x).

5. For each n ∈ S there are exactly k(n) many elements x for which Pn(x) is

not defined.

6. For each n /∈ S there are exactly k(n) many elements x for which Pn(x) is

defined.

7. Let Ai be finite, and let m ∈ Ai be such that m /∈ Aj for all j 6= i. Then there

exists a finite Ai-cube Ci such that ∀x (Pm(x) is defined → x ∈ Ci). (Note

that m /∈ S and Ci has k(m) many elements, so together with Statements 3

and 6, this statement implies that Ci is not contained in a larger cube.)

4.2 Remark. Note that Statements 1 and 3 imply the following statement: for all

n 6= m and all u, if Pn(u) and Pm(u) are defined then PmPn(u) and PnPm(u) are

defined and equal. To prove this let v = Pn(u), which, by Statement 1, implies that

Pn(v) = u. Since PmPn(v) = Pm(u) is defined, applying Statement 3 with x = v,

we have that Pm(v) and PnPm(v) are defined, and PnPm(v) = PmPn(v). If we let

w = Pm(v) then PmPn(u) = w. Since Pn(w) = PnPm(v) = PmPn(v) = Pm(u),

Statement 1 implies that PnPm(u) = PnPn(w) = w. Thus PmPn(u) = PnPm(u).
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Now suppose that M is a model of Σ. Let A ⊆ ω and x ∈ M . Using the

statements above, it is easy to check that ∀n ∈ A (PM
n (x) is defined) if and only

if x belongs to an A-cube. It is also clear that if C1 and C2 are A-cubes in M and

C1 ∩ C2 6= ∅, then C1 = C2.

It now follows that M is the disjoint union of components M0 and M1, where

M0 is the disjoint union of exactly one Ai-cube for each finite Ai. Let x ∈ M1. If

n ∈ S then there are k(n) elements in M0 on which PM
n is not defined. Statement

5 says that there are exactly k(n) such elements in M . Hence PM
n (x) is defined.

Similarly, Statement 6 implies that if n /∈ S then PM
n (x) is not defined. Therefore,

x belongs to an S-cube. Thus, M1 is a disjoint union of S-cubes.

Let C be the class of all structures that are the disjoint union of exactly one

Ai-cube for each finite Ai and some finite or infinite number of S-cubes. Clearly,

any structure in C is a model of Σ, and we have shown that any model of Σ is

in C. Let M be a model of Σ. Each of the S-cubes in M is countable, so if

|M | = ℵ1, then there must be ℵ1 many such S-cubes. Therefore, any two models

of Σ of size ℵ1 are isomorphic, and hence Σ is uncountably categorical. It now

follows by the  Loś-Vaught Test that any model of Σ is a model of T . Thus T

is uncountably categorical and, since C contains infinitely many nonisomorphic

countable structures, T is not countably categorical.

4.3 Lemma. Let M be a computable model of T . Then M contains infinitely

many S-cubes.

Proof. Assume for a contradiction that M contains a finite number r of S-cubes

(which may be 0). We can assume without loss of generality that the domain of

M is ω. Let Ms be the structure obtained by restricting the domain of M to

{0, . . . , s} and the language to P0, . . . , Ps. Choose one element from each S-cube,

say c1, . . . , cr. Define a computable function g : ω × ω → [ω]<ω ∪ {∞} as follows.

If x > s then g(x, s) = ∅. If x is connected to some ci in Ms then g(x, s) = ∞.

Otherwise, g(x, s) is the set of all k 6 s for which there is a y 6 s such that

PM
k (x, y).

Clearly, g(x, s) is computable. Also, if x belongs to some Ai-cube in M then

g(x, s) ⊆ Ai, and if g(x, s) = ∞ then x must belong to an S-cube. It is now easy

to check that f(x) = lims g(x, s) is S-limitwise monotonic and {f(x) : f(x) 6=

∞} = {Ai : |Ai| < ω}. But this contradicts the fact that {Ai : |Ai| < ω} is not

S-monotonically approximable.
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Since Mω is computable, it contains infinitely many S-cubes, and therefore

is saturated. Other countable models of T have only finitely many S-cubes, and

hence do not have computable presentations.
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