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Definitions

Membership problem

Let M be an n× n matrix and F = {M1, . . . ,Mk} be a finite
collection of n× n matrices. Determine whether M ∈ 〈F 〉, that is,
whether

M = Mi1Mi2 · · ·Mit

for some sequence of matrices Mi1 ,Mi2 , . . . ,Mit ∈ F .
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Known results

Membership problem is algorithmically undecidable for 3× 3
matrices over integers, even if we assume that M is the zero
matrix. [Paterson, 1970]

Membership problem is decidable in PTIME for commuting
matrices (over algebraic numbers) [Babai, et. al., 1996]

The Membership problem is decidable for matrices from
GL(2,Z), where GL(2,Z) is a group of 2× 2 integer matrices
with determinant ±1. [C. Choffrut and J. Karhumäki, 2005]

It is a long standing open question whether the Membership
problem is decidable for 2× 2 matrices (even over integers).
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Main result

A matrix is nonsingular if it has a nonzero determinant.

Main result

Given a finite collection F of nonsingular matrices from Z2×2 and
a nonsingular matrix M ∈ Z2×2, it is decidable whether M ∈ 〈F 〉.
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Let F = {M1, . . . ,Mk} ∪ {N1, . . . , Nr},
where det(Mi) 6= ±1 and Ni ∈ GL(2,Z).

Let S = 〈N1, . . . , Nr〉 be the semigroup which is generated by the
matrices from F which belong to GL(2,Z).

M ∈ 〈F 〉 iff there exist i1, . . . , it ∈ {1, . . . , k} and matrices
A1, . . . , At, At+1 ∈ S such that

M = A1Mi1A2Mi2 · · ·AtMitAt+1.

The value of t is bounded: since |det(Mi)| ≥ 2, we have that
t ≤ log2 |det(M)|.
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So, to decide whether M ∈ 〈F 〉 we go through all sequences
i1, . . . , it ∈ {1, . . . , k} of length up to log2 |det(M)| and for each
such sequence check whether there are matrices
A1, . . . , At, At+1 ∈ S such that

M = A1Mi1A2Mi2 · · ·AtMitAt+1.

Theorem

Given a nonsingular matrices M and M1, . . . ,Mt and a finitely
generated semigroup S ⊆ GL(2,Z), it is decidable whether there
are matrices A1, . . . , At, At+1 ∈ S such that

M = A1M1A2M2 · · ·AtMtAt+1.
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Proof sketch: The base case

The proof is by induction on t.

The base case t = 1: M = A1M1A2.

Theorem (Smith Normal Form)

For any matrix A ∈ Z2×2, there are matrices E,F from GL(2,Z)

such that A = E

[
m 0
0 nm

]
F for some n,m ∈ N.

The numbers n and m are uniquely defined by A. The diagonal

matrix D =

[
m 0
0 nm

]
is called the Smith normal form of A.
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Proof sketch: The base case

If M = A1M1A2, then M and M1 must have the same Smith
normal form D because A1, A2 ∈ GL(2,Z).

The base case t = 1: D = A1DA2, where D =

[
1 0
0 n

]
.

Theorem

Given a matrix D =

[
1 0
0 n

]
and a finitely generated semigroup

S ⊆ GL(2,Z), it is decidable whether there are matrices
A1, A2 ∈ S such that

D = A1DA2.
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Proof sketch: The base case

D =

[
1 0
0 n

]
. The equation D = A1DA2 is equivalent to

A−1
2 = D−1A1D = AD1 .

Let A1 =

[
a1 a2
a3 a4

]
and A2 =

[
b1 b2
b3 b4

]
, then we have

[
b4 −b2
−b3 b1

]
=

[
a1 na2
1
na3 a4

]
If the above equation has a solution, then n divides a3.

Let H =
{[a1 a2

a3 a4

]
∈ GL(2,Z) : n divides a3

}
.

Thus A ∈ H if and only if AD ∈ GL(2,Z).

Pavel Semukhin Membership problem



Proof sketch: The base case

D =

[
1 0
0 n

]
. The equation D = A1DA2 is equivalent to

A−1
2 = D−1A1D = AD1 .

Let A1 =

[
a1 a2
a3 a4

]
and A2 =

[
b1 b2
b3 b4

]
, then we have

[
b4 −b2
−b3 b1

]
=

[
a1 na2
1
na3 a4

]

If the above equation has a solution, then n divides a3.

Let H =
{[a1 a2

a3 a4

]
∈ GL(2,Z) : n divides a3

}
.

Thus A ∈ H if and only if AD ∈ GL(2,Z).

Pavel Semukhin Membership problem



Proof sketch: The base case

D =

[
1 0
0 n

]
. The equation D = A1DA2 is equivalent to

A−1
2 = D−1A1D = AD1 .

Let A1 =

[
a1 a2
a3 a4

]
and A2 =

[
b1 b2
b3 b4

]
, then we have

[
b4 −b2
−b3 b1

]
=

[
a1 na2
1
na3 a4

]
If the above equation has a solution, then n divides a3.

Let H =
{[a1 a2

a3 a4

]
∈ GL(2,Z) : n divides a3

}
.

Thus A ∈ H if and only if AD ∈ GL(2,Z).

Pavel Semukhin Membership problem



Proof sketch: The base case

D =

[
1 0
0 n

]
. The equation D = A1DA2 is equivalent to

A−1
2 = D−1A1D = AD1 .

Let A1 =

[
a1 a2
a3 a4

]
and A2 =

[
b1 b2
b3 b4

]
, then we have

[
b4 −b2
−b3 b1

]
=

[
a1 na2
1
na3 a4

]
If the above equation has a solution, then n divides a3.

Let H =
{[a1 a2

a3 a4

]
∈ GL(2,Z) : n divides a3

}
.

Thus A ∈ H if and only if AD ∈ GL(2,Z).

Pavel Semukhin Membership problem



Proof sketch: The base case

Proposition

H is a subgroup of GL(2,Z) of finite index (at most n2).

A right coset of H in GL(2,Z) is a subset

HU = {AU : A ∈ H},

where U ∈ GL(2,Z).

The index is H in GL(2,Z) is the number of right cosets of H.
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Presentation of matrices by words

The group GL(2,Z) is generated by the matrices

S =

[
0 −1
1 0

]
, R =

[
0 −1
1 1

]
and N =

[
1 0
0 −1

]
.

So any matrix A ∈ GL(2,Z) is represented by a word in the
alphabet Σ = {S,R,N}.
This presentation is not unique because S2 = R3 = −I.

However, for every M ∈ GL(2,Z) there is a unique canonical word
w ∈ {S,R,N}∗ which represents M .

A word w is canonical if it does not contain subwords SS and
RRR and N appears only in the first position of w.
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Regular subsets

A subset S of GL(2,Z) is regular if there is a regular language L
in the alphabet Σ = {S,R,N} such that

Every word w ∈ L represents a matrix from the subset S.

For any A ∈ S, there is at least one w ∈ L such that w
represents A.

A semigroup S = 〈M1, . . . ,Mk〉 is defined by the regular
expression (w1 + · · ·+ wk)

∗, where w1, . . . , wk are words that
represent the matrices M1, . . . ,Mk.

wk

w2

w1
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H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}

Theorem

The set L = {w : w represents a matrix from H} is regular.

Let U0 = I, U1, . . . , Us be representatives of the right cosets
of H in GL(2,Z).

Then the automaton A that recognizes L has the states
Q = {U0, U1, . . . , Us}, where U0 is both the initial and the
final state of A.

A has a transition Ui
R−→ Uj iff UiRU

−1
j ∈ H.

And similarly for S- and N -transitions.
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Example of an automaton for H

Let D =

[
1 0
0 2

]
. Then H has index 3 in GL(2,Z) and

representatives of the right cosets of H in GL(2,Z) are

U0 = I, U1 =

[
1 0
1 1

]
and U2 =

[
0 −1
1 0

]
.

U0 U1

U2

R

S

R

R, S

N

N N , S

U0RU
−1
1 =

[
1 −1
0 1

]
∈ H.

So, A has a transition

U0
R−→ U1.
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Base case D = A1DA2

Let M be an automaton that recognizes the semigroup S. We will
construct an automaton Inv(M) that recognizes S−1 and an
automaton F(M) that recognizes the following subset of GL(2,Z)

SD = {AD : A ∈ S and A ∈ H},

where H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}.

Then the equation A−1
2 = AD1 has a solution A1, A2 ∈ S iff

L(Can(Inv(M))) ∩ L(Can(F(M))) 6= ∅.

Can(M) recognizes the same subset of GL(2,Z) as M but
accepts only canonical words.
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Construction of Can(M)

To construct Can(M) we add the following transitions to M:

If q1 and q2 are two states of M which are connected by a
path with label RRR or SS , then we add a transition with
label (−I) from q1 to q2.

If q1 and q2 are two states of M which are connected by a
path with label (−I)(−I) or εε, then we add an ε-transition
from q1 to q2.

Repeat this process until no new transitions can be added.

We also add special transitions in order to move N to the
beginning of the words.

R R R S S

−I −I

ε
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We need to build F(M) that recognizes the set

SD = {AD : A ∈ S and A ∈ H},

where H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}.

The construction of F(M) is based on the following property:
if A = SRS, then AD = SDRDSD.

The idea is to replace every transition qi
R−→ qj of M by a path

labelled by a word w such that w represents the matrix RD. And
do the same for S- and N -transitions.

However, SD and RD have fractional coefficients. So they don’t
belong to GL(2,Z) and cannot be presented by words.

If D =

[
1 0
0 n

]
, then SD =

[
0 −1
1
n 0

]
and RD =

[
0 −1
1
n 1

]
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We need to build F(M) that recognizes the set

SD = {AD : A ∈ S and A ∈ H},

where H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}.

Let A be the automaton which recognizes H.
Recall that A has the states {U0, U1, . . . , Us}.
Suppose the automaton M has the states {q0, . . . , qr}.

To construct F(M) we first construct the Cartesian product
M×A which recognizes the intersection L(M) ∩ L(A).

Then we replace every transition (qi, Uj)
R−→ (ql, Um) of M×A

with a path

(qi, Uj)
σ1−→ p1

σ2−→ p2 → · · · → pk−1
σk−→ (ql, Um),

where p1, p2, . . . , pk−1 are new states and the word

w = σ1σ2 . . . σk represents the matrix (UjRU
−1
m )

D
.

Do the same for S- and N -transitions.
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Then we replace every transition (qi, Uj)
R−→ (ql, Um) of M×A

with a path

(qi, Uj)
σ1−→ p1

σ2−→ p2 → · · · → pk−1
σk−→ (ql, Um),

where p1, p2, . . . , pk−1 are new states and the word

w = σ1σ2 . . . σk represents the matrix (UjRU
−1
m )

D
.

If (qi, Uj)
R−→ (ql, Um) is a transition of M×A, then A has a

transition Uj
R−→ Um.

By definition of A this implies that UjRU
−1
m ∈ H.

Hence (UjRU
−1
m )

D
belongs to GL(2,Z), and we can find a word

w that represents (UjRU
−1
m )

D
.
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U0 U1

U2

R

R

S

R, S

N

N N , S

Let D =

[
1 0
0 2

]
.

(U0RU
−1
1 )

D
=

[
1 −1
0 1

]D
=

[
1 −2
0 1

]
= RRSRRS .

Pavel Semukhin Membership problem



U0 U1

U2

R

R

S

R, S

N

N N , S

Let D =

[
1 0
0 2

]
.

(U0RU
−1
1 )

D
=

[
1 −1
0 1

]D
=

[
1 −2
0 1

]
= RRSRRS .

Pavel Semukhin Membership problem



U0 U1

U2

R

R

S

R, S

N

N N , S

Let D =

[
1 0
0 2

]
.

(U0RU
−1
1 )

D
=

[
1 −1
0 1

]D
=

[
1 −2
0 1

]
= RRSRRS .

Pavel Semukhin Membership problem



U0 U1

U2

RRSRRS

R

S

R, S

N

N N , S

Let D =

[
1 0
0 2

]
.

(U0RU
−1
1 )

D
=

[
1 −1
0 1

]D
=

[
1 −2
0 1

]
= RRSRRS .

Pavel Semukhin Membership problem



U0 U1

U2

RRSRRS

R

S

R, S

N

N N , S

Let D =

[
1 0
0 2

]
.

(U0RU
−1
1 )

D
=

[
1 −1
0 1

]D
=

[
1 −2
0 1

]
= RRSRRS .

Pavel Semukhin Membership problem



U0 U1

U2

RRSRRS

R

S

R, S

N

N N , S

Let D =

[
1 0
0 2

]
.

(U0RU
−1
1 )

D
=

[
1 −1
0 1

]D
=

[
1 −2
0 1

]
= RRSRRS .

Pavel Semukhin Membership problem



U0 U1

U2

RRSRRS

R

S

R, S

N

N N , S

Let D =

[
1 0
0 2

]
.

(U1RU
−1
2 )

D
=

[
1 0
0 1

]D
= I.

Pavel Semukhin Membership problem



U0 U1

U2

RRSRRS

ε
S

R, S

N

N N , S

Let D =

[
1 0
0 2

]
.

(U1RU
−1
2 )

D
=

[
1 0
0 1

]D
= I.

Pavel Semukhin Membership problem



Suppose A = SRS belongs to S ∩H. Then there is an accepting
run of SRS in the automaton A that recognizes H

U0
S−→ U1

R−→ U2
S−→ U0, U0 = I

The matrices U0SU
−1
1 , U1RU

−1
2 , U2SU

−1
0 belong to H.

Rewrite A = SRS = (U0SU
−1
1 )(U1RU

−1
2 )(U2SU

−1
0 ).

Then AD = (U0SU
−1
1 )

D︸ ︷︷ ︸
w1

(U1RU
−1
2 )

D︸ ︷︷ ︸
w2

(U2SU
−1
0 )

D︸ ︷︷ ︸
w3

.

Let w1, w2 and w3 be words that represent the matrices

(U0SU
−1
1 )

D
, (U1RU

−1
2 )

D
and (U2SU

−1
0 )

D
.

Then F(M) has an accepting path of the form

(q0, U0)
w1−−−−→ (q1, U1)

w2−−−−→ (q2, U2)
w3−−−−→ (q3, U0)

where q0
S−→ q1

R−→ q2
S−→ q3 is an accepting run of M on SRS.
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run of SRS in the automaton A that recognizes H

U0
S−→ U1

R−→ U2
S−→ U0, U0 = I

The matrices U0SU
−1
1 , U1RU

−1
2 , U2SU

−1
0 belong to H.

Rewrite A = SRS = (U0SU
−1
1 )(U1RU

−1
2 )(U2SU

−1
0 ).

Then AD = (U0SU
−1
1 )

D︸ ︷︷ ︸
w1

(U1RU
−1
2 )

D︸ ︷︷ ︸
w2

(U2SU
−1
0 )

D︸ ︷︷ ︸
w3

.

Let w1, w2 and w3 be words that represent the matrices

(U0SU
−1
1 )

D
, (U1RU

−1
2 )

D
and (U2SU

−1
0 )

D
.

Then F(M) has an accepting path of the form

(q0, U0)
w1−−−−→ (q1, U1)

w2−−−−→ (q2, U2)
w3−−−−→ (q3, U0)

where q0
S−→ q1
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S−→ q3 is an accepting run of M on SRS.
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Main steps of the proof

We use Smith normal form theorem to reduce M = A1M1A2

to D = A1DA2, where D =

[
1 0
0 n

]
.

Rewrite D = A1DA2 as A−1
2 = AD1 and note that

A1 ∈ H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}
H is a subgroup of GL(2,Z) of finite index, and there is an
automaton A that recognizes H.

Construction of Can(A).

Construction of F(M) that recognizes
SD = {AD : A ∈ S and A ∈ H}.
The equation A−1

2 = AD1 has a solution A1, A2 ∈ S iff

L(Can(Inv(M))) ∩ L(Can(F(M))) 6= ∅.

Pavel Semukhin Membership problem



Main steps of the proof

We use Smith normal form theorem to reduce M = A1M1A2

to D = A1DA2, where D =

[
1 0
0 n

]
.

Rewrite D = A1DA2 as A−1
2 = AD1 and note that

A1 ∈ H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}
H is a subgroup of GL(2,Z) of finite index, and there is an
automaton A that recognizes H.

Construction of Can(A).

Construction of F(M) that recognizes
SD = {AD : A ∈ S and A ∈ H}.
The equation A−1

2 = AD1 has a solution A1, A2 ∈ S iff

L(Can(Inv(M))) ∩ L(Can(F(M))) 6= ∅.

Pavel Semukhin Membership problem



Main steps of the proof

We use Smith normal form theorem to reduce M = A1M1A2

to D = A1DA2, where D =

[
1 0
0 n

]
.

Rewrite D = A1DA2 as A−1
2 = AD1 and note that

A1 ∈ H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}

H is a subgroup of GL(2,Z) of finite index, and there is an
automaton A that recognizes H.

Construction of Can(A).

Construction of F(M) that recognizes
SD = {AD : A ∈ S and A ∈ H}.
The equation A−1

2 = AD1 has a solution A1, A2 ∈ S iff

L(Can(Inv(M))) ∩ L(Can(F(M))) 6= ∅.

Pavel Semukhin Membership problem



Main steps of the proof

We use Smith normal form theorem to reduce M = A1M1A2

to D = A1DA2, where D =

[
1 0
0 n

]
.

Rewrite D = A1DA2 as A−1
2 = AD1 and note that

A1 ∈ H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}
H is a subgroup of GL(2,Z) of finite index, and there is an
automaton A that recognizes H.

Construction of Can(A).

Construction of F(M) that recognizes
SD = {AD : A ∈ S and A ∈ H}.
The equation A−1

2 = AD1 has a solution A1, A2 ∈ S iff

L(Can(Inv(M))) ∩ L(Can(F(M))) 6= ∅.

Pavel Semukhin Membership problem



Main steps of the proof

We use Smith normal form theorem to reduce M = A1M1A2

to D = A1DA2, where D =

[
1 0
0 n

]
.

Rewrite D = A1DA2 as A−1
2 = AD1 and note that

A1 ∈ H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}
H is a subgroup of GL(2,Z) of finite index, and there is an
automaton A that recognizes H.

Construction of Can(A).

Construction of F(M) that recognizes
SD = {AD : A ∈ S and A ∈ H}.
The equation A−1

2 = AD1 has a solution A1, A2 ∈ S iff

L(Can(Inv(M))) ∩ L(Can(F(M))) 6= ∅.

Pavel Semukhin Membership problem



Main steps of the proof

We use Smith normal form theorem to reduce M = A1M1A2

to D = A1DA2, where D =

[
1 0
0 n

]
.

Rewrite D = A1DA2 as A−1
2 = AD1 and note that

A1 ∈ H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}
H is a subgroup of GL(2,Z) of finite index, and there is an
automaton A that recognizes H.

Construction of Can(A).

Construction of F(M) that recognizes
SD = {AD : A ∈ S and A ∈ H}.

The equation A−1
2 = AD1 has a solution A1, A2 ∈ S iff

L(Can(Inv(M))) ∩ L(Can(F(M))) 6= ∅.

Pavel Semukhin Membership problem



Main steps of the proof

We use Smith normal form theorem to reduce M = A1M1A2

to D = A1DA2, where D =

[
1 0
0 n

]
.

Rewrite D = A1DA2 as A−1
2 = AD1 and note that

A1 ∈ H = {A ∈ GL(2,Z) : AD ∈ GL(2,Z)}
H is a subgroup of GL(2,Z) of finite index, and there is an
automaton A that recognizes H.

Construction of Can(A).

Construction of F(M) that recognizes
SD = {AD : A ∈ S and A ∈ H}.
The equation A−1

2 = AD1 has a solution A1, A2 ∈ S iff

L(Can(Inv(M))) ∩ L(Can(F(M))) 6= ∅.

Pavel Semukhin Membership problem



Construction of F(M)

Recall that M recognizes S, and A recognizes H.
To construct F(M):

First, construct the product M×A for L(M) ∩ L(A).

Use A to rewrite any word accepted by A as

SRS = (U0SU
−1
1 )(U1RU

−1
2 )(U2SU

−1
0 )

where U0
S−→ U1

R−→ U2
S−→ U0 is an accepting run of A.

Express (SRS)D = (U0SU
−1
1 )

D
(U1RU

−1
2 )

D
(U2SU

−1
0 )

D

Replace transitions of M×A with new paths:

every transition (qi, Uj)
R−→ (ql, Um) is replaced by a path with

label w, where w represents the matrix (UjRU
−1
m )

D
.
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