Membership problem for 2×2 integer matrices

Pavel Semukhin
joint work with Igor Potapov
Department of Computer Science, University of Liverpool

24 July, 2017

This work was supported by EPSRC grant "Reachability problems for words, matrices and maps" (EP/M00077X/1)

Definitions

Membership problem

Let M be an $n \times n$ matrix and $F=\left\{M_{1}, \ldots, M_{k}\right\}$ be a finite collection of $n \times n$ matrices. Determine whether $M \in\langle F\rangle$, that is, whether

$$
M=M_{i_{1}} M_{i_{2}} \cdots M_{i_{t}}
$$

for some sequence of matrices $M_{i_{1}}, M_{i_{2}}, \ldots, M_{i_{t}} \in F$.

Known results

- Membership problem is algorithmically undecidable for 3×3 matrices over integers, even if we assume that M is the zero matrix. [Paterson, 1970]

Known results

- Membership problem is algorithmically undecidable for 3×3 matrices over integers, even if we assume that M is the zero matrix. [Paterson, 1970]
- Membership problem is decidable in PTIME for commuting matrices (over algebraic numbers) [Babai, et. al., 1996]

Known results

- Membership problem is algorithmically undecidable for 3×3 matrices over integers, even if we assume that M is the zero matrix. [Paterson, 1970]
- Membership problem is decidable in PTIME for commuting matrices (over algebraic numbers) [Babai, et. al., 1996]
- The Membership problem is decidable for matrices from $\mathrm{GL}(2, \mathbb{Z})$, where $\mathrm{GL}(2, \mathbb{Z})$ is a group of 2×2 integer matrices with determinant ± 1. [C. Choffrut and J. Karhumäki, 2005]

Known results

- Membership problem is algorithmically undecidable for 3×3 matrices over integers, even if we assume that M is the zero matrix. [Paterson, 1970]
- Membership problem is decidable in PTIME for commuting matrices (over algebraic numbers) [Babai, et. al., 1996]
- The Membership problem is decidable for matrices from $\mathrm{GL}(2, \mathbb{Z})$, where $\mathrm{GL}(2, \mathbb{Z})$ is a group of 2×2 integer matrices with determinant ± 1. [C. Choffrut and J. Karhumäki, 2005]
- It is a long standing open question whether the Membership problem is decidable for 2×2 matrices (even over integers).

Main result

A matrix is nonsingular if it has a nonzero determinant.

Main result

A matrix is nonsingular if it has a nonzero determinant.

Main result

Given a finite collection F of nonsingular matrices from $\mathbb{Z}^{2 \times 2}$ and a nonsingular matrix $M \in \mathbb{Z}^{2 \times 2}$, it is decidable whether $M \in\langle F\rangle$.

Let $F=\left\{M_{1}, \ldots, M_{k}\right\} \cup\left\{N_{1}, \ldots, N_{r}\right\}$, where $\operatorname{det}\left(M_{i}\right) \neq \pm 1$ and $N_{i} \in \mathrm{GL}(2, \mathbb{Z})$.

Let $\mathcal{S}=\left\langle N_{1}, \ldots, N_{r}\right\rangle$ be the semigroup which is generated by the matrices from F which belong to GL $(2, \mathbb{Z})$.

Let $F=\left\{M_{1}, \ldots, M_{k}\right\} \cup\left\{N_{1}, \ldots, N_{r}\right\}$, where $\operatorname{det}\left(M_{i}\right) \neq \pm 1$ and $N_{i} \in \mathrm{GL}(2, \mathbb{Z})$.

Let $\mathcal{S}=\left\langle N_{1}, \ldots, N_{r}\right\rangle$ be the semigroup which is generated by the matrices from F which belong to $\mathrm{GL}(2, \mathbb{Z})$.
$M \in\langle F\rangle$ iff there exist $i_{1}, \ldots, i_{t} \in\{1, \ldots, k\}$ and matrices $A_{1}, \ldots, A_{t}, A_{t+1} \in \mathcal{S}$ such that

$$
M=A_{1} M_{i_{1}} A_{2} M_{i_{2}} \cdots A_{t} M_{i_{t}} A_{t+1}
$$

Let $F=\left\{M_{1}, \ldots, M_{k}\right\} \cup\left\{N_{1}, \ldots, N_{r}\right\}$, where $\operatorname{det}\left(M_{i}\right) \neq \pm 1$ and $N_{i} \in \mathrm{GL}(2, \mathbb{Z})$.

Let $\mathcal{S}=\left\langle N_{1}, \ldots, N_{r}\right\rangle$ be the semigroup which is generated by the matrices from F which belong to GL $(2, \mathbb{Z})$.
$M \in\langle F\rangle$ iff there exist $i_{1}, \ldots, i_{t} \in\{1, \ldots, k\}$ and matrices $A_{1}, \ldots, A_{t}, A_{t+1} \in \mathcal{S}$ such that

$$
M=A_{1} M_{i_{1}} A_{2} M_{i_{2}} \cdots A_{t} M_{i_{t}} A_{t+1}
$$

The value of t is bounded: since $\left|\operatorname{det}\left(M_{i}\right)\right| \geq 2$, we have that $t \leq \log _{2}|\operatorname{det}(M)|$.

So, to decide whether $M \in\langle F\rangle$ we go through all sequences $i_{1}, \ldots, i_{t} \in\{1, \ldots, k\}$ of length up to $\log _{2}|\operatorname{det}(M)|$ and for each such sequence check whether there are matrices $A_{1}, \ldots, A_{t}, A_{t+1} \in \mathcal{S}$ such that

$$
M=A_{1} M_{i_{1}} A_{2} M_{i_{2}} \cdots A_{t} M_{i_{t}} A_{t+1}
$$

So, to decide whether $M \in\langle F\rangle$ we go through all sequences $i_{1}, \ldots, i_{t} \in\{1, \ldots, k\}$ of length up to $\log _{2}|\operatorname{det}(M)|$ and for each such sequence check whether there are matrices
$A_{1}, \ldots, A_{t}, A_{t+1} \in \mathcal{S}$ such that

$$
M=A_{1} M_{i_{1}} A_{2} M_{i_{2}} \cdots A_{t} M_{i_{t}} A_{t+1}
$$

Theorem

Given a nonsingular matrices M and M_{1}, \ldots, M_{t} and a finitely generated semigroup $\mathcal{S} \subseteq \mathrm{GL}(2, \mathbb{Z})$, it is decidable whether there are matrices $A_{1}, \ldots, A_{t}, A_{t+1} \in \mathcal{S}$ such that

$$
M=A_{1} M_{1} A_{2} M_{2} \cdots A_{t} M_{t} A_{t+1}
$$

Proof sketch: The base case

The proof is by induction on t.

Proof sketch: The base case

The proof is by induction on t.
The base case $t=1: \quad M=A_{1} M_{1} A_{2}$.

Proof sketch: The base case

The proof is by induction on t.
The base case $t=1: \quad M=A_{1} M_{1} A_{2}$.

Theorem (Smith Normal Form)

For any matrix $A \in \mathbb{Z}^{2 \times 2}$, there are matrices E, F from $\mathrm{GL}(2, \mathbb{Z})$ such that $A=E\left[\begin{array}{cc}m & 0 \\ 0 & n m\end{array}\right] F$ for some $n, m \in \mathbb{N}$.
The numbers n and m are uniquely defined by A. The diagonal matrix $D=\left[\begin{array}{cc}m & 0 \\ 0 & n m\end{array}\right]$ is called the Smith normal form of A.

Proof sketch: The base case

If $M=A_{1} M_{1} A_{2}$, then M and M_{1} must have the same Smith normal form D because $A_{1}, A_{2} \in \mathrm{GL}(2, \mathbb{Z})$.

If $M=A_{1} M_{1} A_{2}$, then M and M_{1} must have the same Smith normal form D because $A_{1}, A_{2} \in \mathrm{GL}(2, \mathbb{Z})$.

The base case $t=1: \quad M=A_{1} M_{1} A_{2}$.

If $M=A_{1} M_{1} A_{2}$, then M and M_{1} must have the same Smith normal form D because $A_{1}, A_{2} \in \mathrm{GL}(2, \mathbb{Z})$.
The base case $t=1$: $\quad D=A_{1} D A_{2}$, where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & n\end{array}\right]$.

Proof sketch: The base case

If $M=A_{1} M_{1} A_{2}$, then M and M_{1} must have the same Smith normal form D because $A_{1}, A_{2} \in \mathrm{GL}(2, \mathbb{Z})$.
The base case $t=1$: $\quad D=A_{1} D A_{2}$, where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & n\end{array}\right]$.

Theorem

Given a matrix $D=\left[\begin{array}{ll}1 & 0 \\ 0 & n\end{array}\right]$ and a finitely generated semigroup
$\mathcal{S} \subseteq \mathrm{GL}(2, \mathbb{Z})$, it is decidable whether there are matrices
$A_{1}, A_{2} \in \mathcal{S}$ such that

$$
D=A_{1} D A_{2}
$$

Proof sketch: The base case

$$
\begin{gathered}
D=\left[\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right] \text {. The equation } D=A_{1} D A_{2} \text { is equivalent to } \\
A_{2}^{-1}=D^{-1} A_{1} D=A_{1}^{D}
\end{gathered}
$$

$$
\begin{gathered}
D=\left[\begin{array}{cc}
1 & 0 \\
0 & n
\end{array}\right] \text {. The equation } D=A_{1} D A_{2} \text { is equivalent to } \\
\qquad A_{2}^{-1}=D^{-1} A_{1} D=A_{1}^{D} \\
\text { Let } A_{1}=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right] \text { and } A_{2}=\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right] \text {, then we have } \\
\qquad\left[\begin{array}{cc}
b_{4} & -b_{2} \\
-b_{3} & b_{1}
\end{array}\right]=\left[\begin{array}{cc}
a_{1} & n a_{2} \\
\frac{1}{n} a_{3} & a_{4}
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
D=\left[\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right] \text {. The equation } D=A_{1} D A_{2} \text { is equivalent to } \\
\qquad A_{2}^{-1}=D^{-1} A_{1} D=A_{1}^{D} \\
\text { Let } A_{1}=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right] \text { and } A_{2}=\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right] \text {, then we have } \\
\qquad\left[\begin{array}{cc}
b_{4} & -b_{2} \\
-b_{3} & b_{1}
\end{array}\right]=\left[\begin{array}{cc}
a_{1} & n a_{2} \\
\frac{1}{n} a_{3} & a_{4}
\end{array}\right]
\end{gathered}
$$

If the above equation has a solution, then n divides a_{3}.
$D=\left[\begin{array}{ll}1 & 0 \\ 0 & n\end{array}\right]$. The equation $D=A_{1} D A_{2}$ is equivalent to

$$
A_{2}^{-1}=D^{-1} A_{1} D=A_{1}^{D}
$$

Let $A_{1}=\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]$ and $A_{2}=\left[\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right]$, then we have

$$
\left[\begin{array}{cc}
b_{4} & -b_{2} \\
-b_{3} & b_{1}
\end{array}\right]=\left[\begin{array}{cc}
a_{1} & n a_{2} \\
\frac{1}{n} a_{3} & a_{4}
\end{array}\right]
$$

If the above equation has a solution, then n divides a_{3}.
Let $H=\left\{\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right] \in \mathrm{GL}(2, \mathbb{Z}): n\right.$ divides $\left.a_{3}\right\}$.
Thus $A \in H$ if and only if $A^{D} \in \mathrm{GL}(2, \mathbb{Z})$.

Proof sketch: The base case

Proposition
H is a subgroup of $\mathrm{GL}(2, \mathbb{Z})$ of finite index (at most n^{2}).

Proof sketch: The base case

Proposition

H is a subgroup of $\mathrm{GL}(2, \mathbb{Z})$ of finite index (at most n^{2}).

A right coset of H in $\mathrm{GL}(2, \mathbb{Z})$ is a subset

$$
H U=\{A U: A \in H\}
$$

where $U \in \mathrm{GL}(2, \mathbb{Z})$.

Proposition

H is a subgroup of $\mathrm{GL}(2, \mathbb{Z})$ of finite index (at most n^{2}).

A right coset of H in $\operatorname{GL}(2, \mathbb{Z})$ is a subset

$$
H U=\{A U: A \in H\}
$$

where $U \in \mathrm{GL}(2, \mathbb{Z})$.
The index is H in $\operatorname{GL}(2, \mathbb{Z})$ is the number of right cosets of H.

Presentation of matrices by words

The group $\mathrm{GL}(2, \mathbb{Z})$ is generated by the matrices
$S=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], R=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$ and $N=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.

Presentation of matrices by words

The group $\mathrm{GL}(2, \mathbb{Z})$ is generated by the matrices
$S=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], R=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$ and $N=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
So any matrix $A \in \mathrm{GL}(2, \mathbb{Z})$ is represented by a word in the alphabet $\Sigma=\{S, R, N\}$.

The group $\mathrm{GL}(2, \mathbb{Z})$ is generated by the matrices
$S=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], R=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$ and $N=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
So any matrix $A \in \mathrm{GL}(2, \mathbb{Z})$ is represented by a word in the alphabet $\Sigma=\{S, R, N\}$.
This presentation is not unique because $S^{2}=R^{3}=-I$.

The group $\mathrm{GL}(2, \mathbb{Z})$ is generated by the matrices
$S=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], R=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$ and $N=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
So any matrix $A \in \mathrm{GL}(2, \mathbb{Z})$ is represented by a word in the alphabet $\Sigma=\{S, R, N\}$.
This presentation is not unique because $S^{2}=R^{3}=-I$.
However, for every $M \in \mathrm{GL}(2, \mathbb{Z})$ there is a unique canonical word $w \in\{S, R, N\}^{*}$ which represents M.

A word w is canonical if it does not contain subwords $S S$ and $R R R$ and N appears only in the first position of w.

Regular subsets

A subset \mathcal{S} of $\mathrm{GL}(2, \mathbb{Z})$ is regular if there is a regular language L in the alphabet $\Sigma=\{S, R, N\}$ such that

- Every word $w \in L$ represents a matrix from the subset \mathcal{S}.
- For any $A \in \mathcal{S}$, there is at least one $w \in L$ such that w represents A.

Regular subsets

A subset \mathcal{S} of $\mathrm{GL}(2, \mathbb{Z})$ is regular if there is a regular language L in the alphabet $\Sigma=\{S, R, N\}$ such that

- Every word $w \in L$ represents a matrix from the subset \mathcal{S}.
- For any $A \in \mathcal{S}$, there is at least one $w \in L$ such that w represents A.

A semigroup $\mathcal{S}=\left\langle M_{1}, \ldots, M_{k}\right\rangle$ is defined by the regular expression $\left(w_{1}+\cdots+w_{k}\right)^{*}$, where w_{1}, \ldots, w_{k} are words that represent the matrices M_{1}, \ldots, M_{k}.

Regular subsets

A subset \mathcal{S} of $\mathrm{GL}(2, \mathbb{Z})$ is regular if there is a regular language L in the alphabet $\Sigma=\{S, R, N\}$ such that

- Every word $w \in L$ represents a matrix from the subset \mathcal{S}.
- For any $A \in \mathcal{S}$, there is at least one $w \in L$ such that w represents A.

A semigroup $\mathcal{S}=\left\langle M_{1}, \ldots, M_{k}\right\rangle$ is defined by the regular expression $\left(w_{1}+\cdots+w_{k}\right)^{*}$, where w_{1}, \ldots, w_{k} are words that represent the matrices M_{1}, \ldots, M_{k}.

$H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$

Theorem

The set $L=\{w: w$ represents a matrix from $H\}$ is regular.

$H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$

Theorem

The set $L=\{w: w$ represents a matrix from $H\}$ is regular.

- Let $U_{0}=I, U_{1}, \ldots, U_{s}$ be representatives of the right cosets of H in $\operatorname{GL}(2, \mathbb{Z})$.

$H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$

Theorem

The set $L=\{w: w$ represents a matrix from $H\}$ is regular.

- Let $U_{0}=I, U_{1}, \ldots, U_{s}$ be representatives of the right cosets of H in $\mathrm{GL}(2, \mathbb{Z})$.
- Then the automaton \mathcal{A} that recognizes L has the states $Q=\left\{U_{0}, U_{1}, \ldots, U_{s}\right\}$, where U_{0} is both the initial and the final state of \mathcal{A}.

$H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$

Theorem

The set $L=\{w: w$ represents a matrix from $H\}$ is regular.

- Let $U_{0}=I, U_{1}, \ldots, U_{s}$ be representatives of the right cosets of H in $\operatorname{GL}(2, \mathbb{Z})$.
- Then the automaton \mathcal{A} that recognizes L has the states $Q=\left\{U_{0}, U_{1}, \ldots, U_{s}\right\}$, where U_{0} is both the initial and the final state of \mathcal{A}.
- \mathcal{A} has a transition $U_{i} \xrightarrow{R} U_{j}$ iff $U_{i} R U_{j}^{-1} \in H$.

And similarly for S - and N-transitions.

Example of an automaton for H

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Then H has index 3 in $\operatorname{GL}(2, \mathbb{Z})$ and representatives of the right cosets of H in $\mathrm{GL}(2, \mathbb{Z})$ are

$$
U_{0}=I, \quad U_{1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad \text { and } \quad U_{2}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

Example of an automaton for H

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Then H has index 3 in $\operatorname{GL}(2, \mathbb{Z})$ and representatives of the right cosets of H in $\mathrm{GL}(2, \mathbb{Z})$ are

$$
U_{0}=I, \quad U_{1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad \text { and } \quad U_{2}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

$$
U_{0} R U_{1}^{-1}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \in H .
$$

So, \mathcal{A} has a transition $U_{0} \xrightarrow{R} U_{1}$.

Base case $D=A_{1} D A_{2}$

Let \mathcal{M} be an automaton that recognizes the semigroup \mathcal{S}. We will construct an automaton $\operatorname{Inv}(\mathcal{M})$ that recognizes \mathcal{S}^{-1} and an automaton $\mathcal{F}(\mathcal{M})$ that recognizes the following subset of $\mathrm{GL}(2, \mathbb{Z})$

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\}
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.

Base case $D=A_{1} D A_{2}$

Let \mathcal{M} be an automaton that recognizes the semigroup \mathcal{S}. We will construct an automaton $\operatorname{Inv}(\mathcal{M})$ that recognizes \mathcal{S}^{-1} and an automaton $\mathcal{F}(\mathcal{M})$ that recognizes the following subset of $\mathrm{GL}(2, \mathbb{Z})$

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\}
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.
Then the equation $A_{2}^{-1}=A_{1}^{D}$ has a solution $A_{1}, A_{2} \in \mathcal{S}$ iff

$$
L(\operatorname{Inv}(\mathcal{M})) \cap L(\mathcal{F}(\mathcal{M})) \neq \emptyset
$$

Base case $D=A_{1} D A_{2}$

Let \mathcal{M} be an automaton that recognizes the semigroup \mathcal{S}. We will construct an automaton $\operatorname{Inv}(\mathcal{M})$ that recognizes \mathcal{S}^{-1} and an automaton $\mathcal{F}(\mathcal{M})$ that recognizes the following subset of $\mathrm{GL}(2, \mathbb{Z})$

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\}
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.
Then the equation $A_{2}^{-1}=A_{1}^{D}$ has a solution $A_{1}, A_{2} \in \mathcal{S}$ iff

$$
L(\operatorname{Can}(\operatorname{Inv}(\mathcal{M}))) \cap L(\operatorname{Can}(\mathcal{F}(\mathcal{M}))) \neq \emptyset
$$

$\operatorname{Can}(\mathcal{M})$ recognizes the same subset of $\mathrm{GL}(2, \mathbb{Z})$ as \mathcal{M} but accepts only canonical words.

Construction of $\operatorname{Can}(\mathcal{M})$

To construct $\operatorname{Can}(\mathcal{M})$ we add the following transitions to \mathcal{M} :

Construction of $\operatorname{Can}(\mathcal{M})$

To construct $\operatorname{Can}(\mathcal{M})$ we add the following transitions to \mathcal{M} :

- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $R R R$ or $S S$, then we add a transition with label $(-I)$ from q_{1} to q_{2}.

Construction of $\operatorname{Can}(\mathcal{M})$

To construct $\operatorname{Can}(\mathcal{M})$ we add the following transitions to \mathcal{M} :

- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $R R R$ or $S S$, then we add a transition with label $(-I)$ from q_{1} to q_{2}.
- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $(-I)(-I)$ or $\epsilon \epsilon$, then we add an ϵ-transition from q_{1} to q_{2}.

Construction of $\operatorname{Can}(\mathcal{M})$

To construct $\operatorname{Can}(\mathcal{M})$ we add the following transitions to \mathcal{M} :

- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $R R R$ or $S S$, then we add a transition with label $(-I)$ from q_{1} to q_{2}.
- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $(-I)(-I)$ or $\epsilon \epsilon$, then we add an ϵ-transition from q_{1} to q_{2}.
- Repeat this process until no new transitions can be added.

Construction of $\operatorname{Can}(\mathcal{M})$

To construct $\operatorname{Can}(\mathcal{M})$ we add the following transitions to \mathcal{M} :

- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $R R R$ or $S S$, then we add a transition with label $(-I)$ from q_{1} to q_{2}.
- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $(-I)(-I)$ or $\epsilon \epsilon$, then we add an ϵ-transition from q_{1} to q_{2}.
- Repeat this process until no new transitions can be added.

We also add special transitions in order to move N to the beginning of the words.

Construction of $\operatorname{Can}(\mathcal{M})$

To construct $\operatorname{Can}(\mathcal{M})$ we add the following transitions to \mathcal{M} :

- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $R R R$ or $S S$, then we add a transition with label $(-I)$ from q_{1} to q_{2}.
- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $(-I)(-I)$ or $\epsilon \epsilon$, then we add an ϵ-transition from q_{1} to q_{2}.
- Repeat this process until no new transitions can be added.

We also add special transitions in order to move N to the beginning of the words.

Construction of $\operatorname{Can}(\mathcal{M})$

To construct $\operatorname{Can}(\mathcal{M})$ we add the following transitions to \mathcal{M} :

- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $R R R$ or $S S$, then we add a transition with label $(-I)$ from q_{1} to q_{2}.
- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $(-I)(-I)$ or $\epsilon \epsilon$, then we add an ϵ-transition from q_{1} to q_{2}.
- Repeat this process until no new transitions can be added.

We also add special transitions in order to move N to the beginning of the words.

Construction of $\operatorname{Can}(\mathcal{M})$

To construct $\operatorname{Can}(\mathcal{M})$ we add the following transitions to \mathcal{M} :

- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $R R R$ or $S S$, then we add a transition with label $(-I)$ from q_{1} to q_{2}.
- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $(-I)(-I)$ or $\epsilon \epsilon$, then we add an ϵ-transition from q_{1} to q_{2}.
- Repeat this process until no new transitions can be added.

We also add special transitions in order to move N to the beginning of the words.

Construction of $\operatorname{Can}(\mathcal{M})$

To construct $\operatorname{Can}(\mathcal{M})$ we add the following transitions to \mathcal{M} :

- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $R R R$ or $S S$, then we add a transition with label $(-I)$ from q_{1} to q_{2}.
- If q_{1} and q_{2} are two states of \mathcal{M} which are connected by a path with label $(-I)(-I)$ or $\epsilon \epsilon$, then we add an ϵ-transition from q_{1} to q_{2}.
- Repeat this process until no new transitions can be added.

We also add special transitions in order to move N to the beginning of the words.

We need to build $\mathcal{F}(\mathcal{M})$ that recognizes the set

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\},
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.

We need to build $\mathcal{F}(\mathcal{M})$ that recognizes the set

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\},
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.
The construction of $\mathcal{F}(\mathcal{M})$ is based on the following property: if $A=S R S$, then $A^{D}=S^{D} R^{D} S^{D}$.

We need to build $\mathcal{F}(\mathcal{M})$ that recognizes the set

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\},
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.
The construction of $\mathcal{F}(\mathcal{M})$ is based on the following property: if $A=S R S$, then $A^{D}=S^{D} R^{D} S^{D}$.
The idea is to replace every transition $q_{i} \xrightarrow{R} q_{j}$ of \mathcal{M} by a path labelled by a word w such that w represents the matrix R^{D}. And do the same for S - and N-transitions.

We need to build $\mathcal{F}(\mathcal{M})$ that recognizes the set

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\},
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.
The construction of $\mathcal{F}(\mathcal{M})$ is based on the following property: if $A=S R S$, then $A^{D}=S^{D} R^{D} S^{D}$.
The idea is to replace every transition $q_{i} \xrightarrow{R} q_{j}$ of \mathcal{M} by a path labelled by a word w such that w represents the matrix R^{D}. And do the same for S - and N-transitions.

However, S^{D} and R^{D} have fractional coefficients. So they don't belong to $\mathrm{GL}(2, \mathbb{Z})$ and cannot be presented by words.

$$
\text { If } D=\left[\begin{array}{cc}
1 & 0 \\
0 & n
\end{array}\right] \text {, then } S^{D}=\left[\begin{array}{cc}
0 & -1 \\
\frac{1}{n} & 0
\end{array}\right] \text { and } R^{D}=\left[\begin{array}{cc}
0 & -1 \\
\frac{1}{n} & 1
\end{array}\right]
$$

We need to build $\mathcal{F}(\mathcal{M})$ that recognizes the set

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\},
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.

We need to build $\mathcal{F}(\mathcal{M})$ that recognizes the set

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\},
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.
Let \mathcal{A} be the automaton which recognizes H.
Recall that \mathcal{A} has the states $\left\{U_{0}, U_{1}, \ldots, U_{s}\right\}$.

We need to build $\mathcal{F}(\mathcal{M})$ that recognizes the set

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\},
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.
Let \mathcal{A} be the automaton which recognizes H.
Recall that \mathcal{A} has the states $\left\{U_{0}, U_{1}, \ldots, U_{s}\right\}$.
Suppose the automaton \mathcal{M} has the states $\left\{q_{0}, \ldots, q_{r}\right\}$.

We need to build $\mathcal{F}(\mathcal{M})$ that recognizes the set

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\}
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.
Let \mathcal{A} be the automaton which recognizes H.
Recall that \mathcal{A} has the states $\left\{U_{0}, U_{1}, \ldots, U_{s}\right\}$.
Suppose the automaton \mathcal{M} has the states $\left\{q_{0}, \ldots, q_{r}\right\}$.
To construct $\mathcal{F}(\mathcal{M})$ we first construct the Cartesian product $\mathcal{M} \times \mathcal{A}$ which recognizes the intersection $L(\mathcal{M}) \cap L(\mathcal{A})$.

We need to build $\mathcal{F}(\mathcal{M})$ that recognizes the set

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\}
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.
Let \mathcal{A} be the automaton which recognizes H.
Recall that \mathcal{A} has the states $\left\{U_{0}, U_{1}, \ldots, U_{s}\right\}$.
Suppose the automaton \mathcal{M} has the states $\left\{q_{0}, \ldots, q_{r}\right\}$.
To construct $\mathcal{F}(\mathcal{M})$ we first construct the Cartesian product $\mathcal{M} \times \mathcal{A}$ which recognizes the intersection $L(\mathcal{M}) \cap L(\mathcal{A})$.

Then we replace every transition $\left(q_{i}, U_{j}\right) \xrightarrow{R}\left(q_{l}, U_{m}\right)$ of $\mathcal{M} \times \mathcal{A}$ with a path

$$
\left(q_{i}, U_{j}\right) \xrightarrow{\sigma_{1}} p_{1} \xrightarrow{\sigma_{2}} p_{2} \rightarrow \cdots \rightarrow p_{k-1} \xrightarrow{\sigma_{k}}\left(q_{l}, U_{m}\right)
$$

where $p_{1}, p_{2}, \ldots, p_{k-1}$ are new states and the word $w=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ represents the matrix $\left(U_{j} R U_{m}^{-1}\right)^{D}$.

We need to build $\mathcal{F}(\mathcal{M})$ that recognizes the set

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\}
$$

where $H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$.
Let \mathcal{A} be the automaton which recognizes H.
Recall that \mathcal{A} has the states $\left\{U_{0}, U_{1}, \ldots, U_{s}\right\}$.
Suppose the automaton \mathcal{M} has the states $\left\{q_{0}, \ldots, q_{r}\right\}$.
To construct $\mathcal{F}(\mathcal{M})$ we first construct the Cartesian product $\mathcal{M} \times \mathcal{A}$ which recognizes the intersection $L(\mathcal{M}) \cap L(\mathcal{A})$.

Then we replace every transition $\left(q_{i}, U_{j}\right) \xrightarrow{R}\left(q_{l}, U_{m}\right)$ of $\mathcal{M} \times \mathcal{A}$ with a path

$$
\left(q_{i}, U_{j}\right) \xrightarrow{\sigma_{1}} p_{1} \xrightarrow{\sigma_{2}} p_{2} \rightarrow \cdots \rightarrow p_{k-1} \xrightarrow{\sigma_{k}}\left(q_{l}, U_{m}\right)
$$

where $p_{1}, p_{2}, \ldots, p_{k-1}$ are new states and the word $w=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ represents the matrix $\left(U_{j} R U_{m}^{-1}\right)^{D}$.
Do the same for S - and N-transitions.

Then we replace every transition $\left(q_{i}, U_{j}\right) \xrightarrow{R}\left(q_{l}, U_{m}\right)$ of $\mathcal{M} \times \mathcal{A}$ with a path

$$
\left(q_{i}, U_{j}\right) \xrightarrow{\sigma_{1}} p_{1} \xrightarrow{\sigma_{2}} p_{2} \rightarrow \cdots \rightarrow p_{k-1} \xrightarrow{\sigma_{k}}\left(q_{l}, U_{m}\right),
$$

where $p_{1}, p_{2}, \ldots, p_{k-1}$ are new states and the word $w=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ represents the matrix $\left(U_{j} R U_{m}^{-1}\right)^{D}$.

Then we replace every transition $\left(q_{i}, U_{j}\right) \xrightarrow{R}\left(q_{l}, U_{m}\right)$ of $\mathcal{M} \times \mathcal{A}$ with a path

$$
\left(q_{i}, U_{j}\right) \xrightarrow{\sigma_{1}} p_{1} \xrightarrow{\sigma_{2}} p_{2} \rightarrow \cdots \rightarrow p_{k-1} \xrightarrow{\sigma_{k}}\left(q_{l}, U_{m}\right),
$$

where $p_{1}, p_{2}, \ldots, p_{k-1}$ are new states and the word $w=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ represents the matrix $\left(U_{j} R U_{m}^{-1}\right)^{D}$.

If $\left(q_{i}, U_{j}\right) \xrightarrow{R}\left(q_{l}, U_{m}\right)$ is a transition of $\mathcal{M} \times \mathcal{A}$, then \mathcal{A} has a transition $U_{j} \xrightarrow{R} U_{m}$.

Then we replace every transition $\left(q_{i}, U_{j}\right) \xrightarrow{R}\left(q_{l}, U_{m}\right)$ of $\mathcal{M} \times \mathcal{A}$ with a path

$$
\left(q_{i}, U_{j}\right) \xrightarrow{\sigma_{1}} p_{1} \xrightarrow{\sigma_{2}} p_{2} \rightarrow \cdots \rightarrow p_{k-1} \xrightarrow{\sigma_{k}}\left(q_{l}, U_{m}\right),
$$

where $p_{1}, p_{2}, \ldots, p_{k-1}$ are new states and the word $w=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ represents the matrix $\left(U_{j} R U_{m}^{-1}\right)^{D}$.

If $\left(q_{i}, U_{j}\right) \xrightarrow{R}\left(q_{l}, U_{m}\right)$ is a transition of $\mathcal{M} \times \mathcal{A}$, then \mathcal{A} has a transition $U_{j} \xrightarrow{R} U_{m}$.
By definition of \mathcal{A} this implies that $U_{j} R U_{m}^{-1} \in H$.

Then we replace every transition $\left(q_{i}, U_{j}\right) \xrightarrow{R}\left(q_{l}, U_{m}\right)$ of $\mathcal{M} \times \mathcal{A}$ with a path

$$
\left(q_{i}, U_{j}\right) \xrightarrow{\sigma_{1}} p_{1} \xrightarrow{\sigma_{2}} p_{2} \rightarrow \cdots \rightarrow p_{k-1} \xrightarrow{\sigma_{k}}\left(q_{l}, U_{m}\right),
$$

where $p_{1}, p_{2}, \ldots, p_{k-1}$ are new states and the word $w=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ represents the matrix $\left(U_{j} R U_{m}^{-1}\right)^{D}$.

If $\left(q_{i}, U_{j}\right) \xrightarrow{R}\left(q_{l}, U_{m}\right)$ is a transition of $\mathcal{M} \times \mathcal{A}$, then \mathcal{A} has a transition $U_{j} \xrightarrow{R} U_{m}$.
By definition of \mathcal{A} this implies that $U_{j} R U_{m}^{-1} \in H$.
Hence $\left(U_{j} R U_{m}^{-1}\right)^{D}$ belongs to $\operatorname{GL}(2, \mathbb{Z})$, and we can find a word w that represents $\left(U_{j} R U_{m}^{-1}\right)^{D}$.

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.
$\left(U_{0} R U_{1}^{-1}\right)^{D}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]^{D}=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]=R R S R R S$.

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.
$\left(U_{0} R U_{1}^{-1}\right)^{D}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]^{D}=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]=\operatorname{RRSRRS}$.

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

$$
\left(U_{1} R U_{2}^{-1}\right)^{D}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{D}=I
$$

Let $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

$$
\left(U_{1} R U_{2}^{-1}\right)^{D}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{D}=I
$$

Suppose $A=S R S$ belongs to $\mathcal{S} \cap H$. Then there is an accepting run of $S R S$ in the automaton \mathcal{A} that recognizes H

$$
U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}, \quad U_{0}=I
$$

Suppose $A=S R S$ belongs to $\mathcal{S} \cap H$. Then there is an accepting run of $S R S$ in the automaton \mathcal{A} that recognizes H

$$
U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}, \quad U_{0}=I
$$

The matrices $U_{0} S U_{1}^{-1}, U_{1} R U_{2}^{-1}, U_{2} S U_{0}^{-1}$ belong to H.

Suppose $A=S R S$ belongs to $\mathcal{S} \cap H$. Then there is an accepting run of $S R S$ in the automaton \mathcal{A} that recognizes H

$$
U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}, \quad U_{0}=I
$$

The matrices $U_{0} S U_{1}^{-1}, U_{1} R U_{2}^{-1}, U_{2} S U_{0}^{-1}$ belong to H.
Rewrite $A=S R S=\left(U_{0} S U_{1}^{-1}\right)\left(U_{1} R U_{2}^{-1}\right)\left(U_{2} S U_{0}^{-1}\right)$.

Suppose $A=S R S$ belongs to $\mathcal{S} \cap H$. Then there is an accepting run of $S R S$ in the automaton \mathcal{A} that recognizes H

$$
U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}, \quad U_{0}=I
$$

The matrices $U_{0} S U_{1}^{-1}, U_{1} R U_{2}^{-1}, U_{2} S U_{0}^{-1}$ belong to H.
Rewrite $A=S R S=\left(U_{0} S U_{1}^{-1}\right)\left(U_{1} R U_{2}^{-1}\right)\left(U_{2} S U_{0}^{-1}\right)$.
Then $A^{D}=\left(U_{0} S U_{1}^{-1}\right)^{D}\left(U_{1} R U_{2}^{-1}\right)^{D}\left(U_{2} S U_{0}^{-1}\right)^{D}$.

Suppose $A=S R S$ belongs to $\mathcal{S} \cap H$. Then there is an accepting run of $S R S$ in the automaton \mathcal{A} that recognizes H

$$
U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}, \quad U_{0}=I
$$

The matrices $U_{0} S U_{1}^{-1}, U_{1} R U_{2}^{-1}, U_{2} S U_{0}^{-1}$ belong to H.
Rewrite $A=S R S=\left(U_{0} S U_{1}^{-1}\right)\left(U_{1} R U_{2}^{-1}\right)\left(U_{2} S U_{0}^{-1}\right)$.
Then $A^{D}=\underbrace{\left(U_{0} S U_{1}^{-1}\right)^{D}}_{w_{1}} \underbrace{\left(U_{1} R U_{2}^{-1}\right)^{D}}_{w_{2}} \underbrace{\left(U_{2} S U_{0}^{-1}\right)^{D}}_{w_{3}}$.
Let w_{1}, w_{2} and w_{3} be words that represent the matrices $\left(U_{0} S U_{1}^{-1}\right)^{D},\left(U_{1} R U_{2}^{-1}\right)^{D}$ and $\left(U_{2} S U_{0}^{-1}\right)^{D}$.

Suppose $A=S R S$ belongs to $\mathcal{S} \cap H$. Then there is an accepting run of $S R S$ in the automaton \mathcal{A} that recognizes H

$$
U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}, \quad U_{0}=I
$$

The matrices $U_{0} S U_{1}^{-1}, U_{1} R U_{2}^{-1}, U_{2} S U_{0}^{-1}$ belong to H.
Rewrite $A=S R S=\left(U_{0} S U_{1}^{-1}\right)\left(U_{1} R U_{2}^{-1}\right)\left(U_{2} S U_{0}^{-1}\right)$.
Then $A^{D}=\underbrace{\left(U_{0} S U_{1}^{-1}\right)^{D}}_{w_{1}} \underbrace{\left(U_{1} R U_{2}^{-1}\right)^{D}}_{w_{2}} \underbrace{\left(U_{2} S U_{0}^{-1}\right)^{D}}_{w_{3}}$.
Let w_{1}, w_{2} and w_{3} be words that represent the matrices $\left(U_{0} S U_{1}^{-1}\right)^{D},\left(U_{1} R U_{2}^{-1}\right)^{D}$ and $\left(U_{2} S U_{0}^{-1}\right)^{D}$.
Then $\mathcal{F}(\mathcal{M})$ has an accepting path of the form

$$
\left(q_{0}, U_{0}\right) \xrightarrow{w_{1}}\left(q_{1}, U_{1}\right) \xrightarrow{w_{2}}\left(q_{2}, U_{2}\right) \xrightarrow{w_{3}}\left(q_{3}, U_{0}\right)
$$

Suppose $A=S R S$ belongs to $\mathcal{S} \cap H$. Then there is an accepting run of $S R S$ in the automaton \mathcal{A} that recognizes H

$$
U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}, \quad U_{0}=I
$$

The matrices $U_{0} S U_{1}^{-1}, U_{1} R U_{2}^{-1}, U_{2} S U_{0}^{-1}$ belong to H.
Rewrite $A=S R S=\left(U_{0} S U_{1}^{-1}\right)\left(U_{1} R U_{2}^{-1}\right)\left(U_{2} S U_{0}^{-1}\right)$.
Then $A^{D}=\underbrace{\left(U_{0} S U_{1}^{-1}\right)^{D}}_{w_{1}} \underbrace{\left(U_{1} R U_{2}^{-1}\right)^{D}}_{w_{2}} \underbrace{\left(U_{2} S U_{0}^{-1}\right)^{D}}_{w_{3}}$.
Let w_{1}, w_{2} and w_{3} be words that represent the matrices $\left(U_{0} S U_{1}^{-1}\right)^{D},\left(U_{1} R U_{2}^{-1}\right)^{D}$ and $\left(U_{2} S U_{0}^{-1}\right)^{D}$.
Then $\mathcal{F}(\mathcal{M})$ has an accepting path of the form

$$
\left(q_{0}, U_{0}\right) \xrightarrow{w_{1}}\left(q_{1}, U_{1}\right) \xrightarrow{w_{2}}\left(q_{2}, U_{2}\right) \xrightarrow{w_{3}}\left(q_{3}, U_{0}\right)
$$

where $q_{0} \xrightarrow{S} q_{1} \xrightarrow{R} q_{2} \xrightarrow{S} q_{3}$ is an accepting run of \mathcal{M} on $S R S$.

Main steps of the proof

Main steps of the proof

- We use Smith normal form theorem to reduce $M=A_{1} M_{1} A_{2}$ to $D=A_{1} D A_{2}$, where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & n\end{array}\right]$.

Main steps of the proof

- We use Smith normal form theorem to reduce $M=A_{1} M_{1} A_{2}$ to $D=A_{1} D A_{2}$, where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & n\end{array}\right]$.
- Rewrite $D=A_{1} D A_{2}$ as $A_{2}^{-1}=A_{1}^{D}$ and note that $A_{1} \in H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$

Main steps of the proof

- We use Smith normal form theorem to reduce $M=A_{1} M_{1} A_{2}$

$$
\text { to } D=A_{1} D A_{2} \text {, where } D=\left[\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right]
$$

- Rewrite $D=A_{1} D A_{2}$ as $A_{2}^{-1}=A_{1}^{D}$ and note that $A_{1} \in H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$
- H is a subgroup of $\mathrm{GL}(2, \mathbb{Z})$ of finite index, and there is an automaton \mathcal{A} that recognizes H.

Main steps of the proof

- We use Smith normal form theorem to reduce $M=A_{1} M_{1} A_{2}$

$$
\text { to } D=A_{1} D A_{2} \text {, where } D=\left[\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right]
$$

- Rewrite $D=A_{1} D A_{2}$ as $A_{2}^{-1}=A_{1}^{D}$ and note that $A_{1} \in H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$
- H is a subgroup of $\mathrm{GL}(2, \mathbb{Z})$ of finite index, and there is an automaton \mathcal{A} that recognizes H.
- Construction of $\operatorname{Can}(\mathcal{A})$.

Main steps of the proof

- We use Smith normal form theorem to reduce $M=A_{1} M_{1} A_{2}$

$$
\text { to } D=A_{1} D A_{2} \text {, where } D=\left[\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right] \text {. }
$$

- Rewrite $D=A_{1} D A_{2}$ as $A_{2}^{-1}=A_{1}^{D}$ and note that $A_{1} \in H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$
- H is a subgroup of $\mathrm{GL}(2, \mathbb{Z})$ of finite index, and there is an automaton \mathcal{A} that recognizes H.
- Construction of $\operatorname{Can}(\mathcal{A})$.
- Construction of $\mathcal{F}(\mathcal{M})$ that recognizes $\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S}\right.$ and $\left.A \in H\right\}$.

Main steps of the proof

- We use Smith normal form theorem to reduce $M=A_{1} M_{1} A_{2}$

$$
\text { to } D=A_{1} D A_{2} \text {, where } D=\left[\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right] \text {. }
$$

- Rewrite $D=A_{1} D A_{2}$ as $A_{2}^{-1}=A_{1}^{D}$ and note that $A_{1} \in H=\left\{A \in \mathrm{GL}(2, \mathbb{Z}): A^{D} \in \mathrm{GL}(2, \mathbb{Z})\right\}$
- H is a subgroup of $\mathrm{GL}(2, \mathbb{Z})$ of finite index, and there is an automaton \mathcal{A} that recognizes H.
- Construction of $\operatorname{Can}(\mathcal{A})$.
- Construction of $\mathcal{F}(\mathcal{M})$ that recognizes

$$
\mathcal{S}^{D}=\left\{A^{D}: A \in \mathcal{S} \text { and } A \in H\right\}
$$

- The equation $A_{2}^{-1}=A_{1}^{D}$ has a solution $A_{1}, A_{2} \in \mathcal{S}$ iff

$$
L(\operatorname{Can}(\operatorname{Inv}(\mathcal{M}))) \cap L(\operatorname{Can}(\mathcal{F}(\mathcal{M}))) \neq \emptyset
$$

Construction of $\mathcal{F}(\mathcal{M})$

Recall that \mathcal{M} recognizes \mathcal{S}, and \mathcal{A} recognizes H. To construct $\mathcal{F}(\mathcal{M})$:

Construction of $\mathcal{F}(\mathcal{M})$

Recall that \mathcal{M} recognizes \mathcal{S}, and \mathcal{A} recognizes H. To construct $\mathcal{F}(\mathcal{M})$:

- First, construct the product $\mathcal{M} \times \mathcal{A}$ for $L(\mathcal{M}) \cap L(\mathcal{A})$.

Construction of $\mathcal{F}(\mathcal{M})$

Recall that \mathcal{M} recognizes \mathcal{S}, and \mathcal{A} recognizes H.
To construct $\mathcal{F}(\mathcal{M})$:

- First, construct the product $\mathcal{M} \times \mathcal{A}$ for $L(\mathcal{M}) \cap L(\mathcal{A})$.
- Use \mathcal{A} to rewrite any word accepted by \mathcal{A} as

$$
S R S=\left(U_{0} S U_{1}^{-1}\right)\left(U_{1} R U_{2}^{-1}\right)\left(U_{2} S U_{0}^{-1}\right)
$$

where $U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}$ is an accepting run of \mathcal{A}.

Construction of $\mathcal{F}(\mathcal{M})$

Recall that \mathcal{M} recognizes \mathcal{S}, and \mathcal{A} recognizes H.
To construct $\mathcal{F}(\mathcal{M})$:

- First, construct the product $\mathcal{M} \times \mathcal{A}$ for $L(\mathcal{M}) \cap L(\mathcal{A})$.
- Use \mathcal{A} to rewrite any word accepted by \mathcal{A} as

$$
S R S=\left(U_{0} S U_{1}^{-1}\right)\left(U_{1} R U_{2}^{-1}\right)\left(U_{2} S U_{0}^{-1}\right)
$$

where $U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}$ is an accepting run of \mathcal{A}.

- Express $(S R S)^{D}=\left(U_{0} S U_{1}^{-1}\right)^{D}\left(U_{1} R U_{2}^{-1}\right)^{D}\left(U_{2} S U_{0}^{-1}\right)^{D}$

Construction of $\mathcal{F}(\mathcal{M})$

Recall that \mathcal{M} recognizes \mathcal{S}, and \mathcal{A} recognizes H.
To construct $\mathcal{F}(\mathcal{M})$:

- First, construct the product $\mathcal{M} \times \mathcal{A}$ for $L(\mathcal{M}) \cap L(\mathcal{A})$.
- Use \mathcal{A} to rewrite any word accepted by \mathcal{A} as

$$
S R S=\left(U_{0} S U_{1}^{-1}\right)\left(U_{1} R U_{2}^{-1}\right)\left(U_{2} S U_{0}^{-1}\right)
$$

where $U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}$ is an accepting run of \mathcal{A}.

- Express $(S R S)^{D}=\left(U_{0} S U_{1}^{-1}\right)^{D}\left(U_{1} R U_{2}^{-1}\right)^{D}\left(U_{2} S U_{0}^{-1}\right)^{D}$
- Replace transitions of $\mathcal{M} \times \mathcal{A}$ with new paths:

Construction of $\mathcal{F}(\mathcal{M})$

Recall that \mathcal{M} recognizes \mathcal{S}, and \mathcal{A} recognizes H.
To construct $\mathcal{F}(\mathcal{M})$:

- First, construct the product $\mathcal{M} \times \mathcal{A}$ for $L(\mathcal{M}) \cap L(\mathcal{A})$.
- Use \mathcal{A} to rewrite any word accepted by \mathcal{A} as

$$
S R S=\left(U_{0} S U_{1}^{-1}\right)\left(U_{1} R U_{2}^{-1}\right)\left(U_{2} S U_{0}^{-1}\right)
$$

where $U_{0} \xrightarrow{S} U_{1} \xrightarrow{R} U_{2} \xrightarrow{S} U_{0}$ is an accepting run of \mathcal{A}.

- Express $(S R S)^{D}=\left(U_{0} S U_{1}^{-1}\right)^{D}\left(U_{1} R U_{2}^{-1}\right)^{D}\left(U_{2} S U_{0}^{-1}\right)^{D}$
- Replace transitions of $\mathcal{M} \times \mathcal{A}$ with new paths: every transition $\left(q_{i}, U_{j}\right) \xrightarrow{R}\left(q_{l}, U_{m}\right)$ is replaced by a path with label w, where w represents the matrix $\left(U_{j} R U_{m}^{-1}\right)^{D}$.

