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ABSTRACT
This work relates numerical problems onmatrices over the rationals

to symbolic algorithms on words and finite automata. Using exact

algebraic algorithms and symbolic computation, we prove new

decidability results for 2× 2matrices over Q. Namely, we introduce

a notion of flat rational sets: if 𝑀 is a monoid and 𝑁 ≤ 𝑀 is its

submonoid, then flat rational sets of 𝑀 relative to 𝑁 are finite

unions of the form 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 where all 𝐿𝑖s are rational subsets
of 𝑁 and 𝑔𝑖 ∈ 𝑀 . We give quite general sufficient conditions under

which flat rational sets form an effective relative Boolean algebra.

As a corollary, we obtain that the emptiness problem for Boolean

combinations of flat rational subsets of GL(2,Q) over GL(2,Z) is
decidable.

We also show a dichotomy for nontrivial group extension of

GL(2,Z) in GL(2,Q): if 𝐺 is a f.g. group such that GL(2,Z) < 𝐺 ≤
GL(2,Q), then either 𝐺 � GL(2,Z) × Z𝑘 , for some 𝑘 ≥ 1, or 𝐺

contains an extension of the Baumslag-Solitar group BS(1, 𝑞), with
𝑞 ≥ 2, of infinite index. It turns out that in the first case the mem-

bership problem for 𝐺 is decidable but the equality problem for

rational subsets of𝐺 is undecidable. In the second case, decidability

of the membership problem is open for every such 𝐺 . In the last

section we prove new decidability results for flat rational sets that

contain singular matrices. In particular, we show that the mem-

bership problem is decidable for flat rational subsets of 𝑀 (2,Q)
relative to the submonoid that is generated by the matrices from

𝑀 (2,Z) with determinants 0,±1 and the central rational matrices.

CCS CONCEPTS
• Theory of computation→ Formal languages and automata
theory; • Computing methodologies → Symbolic and alge-
braic algorithms.
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1 INTRODUCTION
Many problems in the analysis of matrix products are inherently

difficult to solve even in dimension two, and most of such problems

become undecidable in general starting from dimension three or

four. One of these hard questions is themembership problem for ma-

trix semigroups: Given 𝑛 × 𝑛 matrices {𝑀,𝑀1, . . . , 𝑀𝑚}, determine

whether there exist an integer 𝑘 ≥ 1 and 𝑖1, . . . , 𝑖𝑘 ∈ {1, . . . ,𝑚}
such that 𝑀 = 𝑀𝑖1 · · ·𝑀𝑖𝑘 . In other words, determine whether a

matrix belongs to a finitely generated (f.g. for short) semigroup.

The membership problem has been intensively studied since 1947

when A. Markov showed in [29] that this problem is undecidable

for matrices in Z6×6. A natural and important generalization is the

membership problem in rational subsets of a monoid. Rational sets

are those which can be specified by regular expressions. A special

case is the problem above: membership in the semigroup generated

by the matrices𝑀1, . . . , 𝑀𝑚 . Another difficult question is to decide

the knapsack problem: “∃𝑥1, . . . , 𝑥𝑚 ∈ N : 𝑀𝑥1
1

· · ·𝑀𝑥𝑚
𝑚 = 𝑀?”. Even

significantly restricted cases of these problems become undecidable

for high dimensional matrices over the integers [6, 26]; and very

few cases are known to be decidable, see [3, 7, 12]. The decidability

of the membership problem remains open even for 2 × 2 matrices

over integers [11, 14, 21, 25, 33].

Membership in rational subsets of GL(2,Z) (the 2 × 2 integer

matrices with determinant ±1) is decidable. Indeed, GL(2,Z) has
a free subgroup of rank 2 and of index 24 by [32]. Hence it is a

f.g. virtually free group, and therefore the family of rational sub-

sets forms an effective Boolean algebra [38, 40]. Two recent results

which extended the border of decidability for the membership prob-

lem beyond GL(2,Z) were [34, 35]. The first one is in case of the

semigroups of 2 × 2 nonsingular integer matrices, and the second

one is in case of GL(2,Z) extended by integer matrices with zero

determinant.

This paper pushes the decidability border even further. First of

all, we consider membership problems for 2×2matrices over the ra-

tionals whereas [34, 35] deal only with integer matrices. Since decid-

ability of the rational membership problem is known for GL(2,Z),
we focus on subgroups 𝐺 of GL(2,Q) which contain GL(2,Z).

In Sec. 4 we prove a dichotomy result. In the first case of the

dichotomy, 𝐺 is generated by GL(2,Z) and central matrices

(
𝑟 0

0 𝑟

)
.

https://doi.org/10.1145/3373207.3404038
https://doi.org/10.1145/3373207.3404038
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In that case 𝐺 is isomorphic to GL(2,Z) × Z𝑘 for 𝑘 ≥ 1. It can be

derived from known results in the literature about free partially

commutative monoids and groups that equality test for rational

sets in𝐺 is undecidable, but the membership problem in rational

subsets is still decidable. So, this is the best we can hope for if a

group is sitting strictly between GL(2,Z) and GL(2,Q), in general.

If such a group 𝐺 is not isomorphic to GL(2,Z) × Z𝑘 , then our

dichotomy states that it contains a Baumslag-Solitar group BS(1, 𝑞)
for 𝑞 ≥ 2. The Baumslag-Solitar groups BS(𝑝, 𝑞) are defined by two

generators 𝑎 and 𝑡 with the defining relation 𝑡𝑎𝑝𝑡−1 = 𝑎𝑞 . They

were introduced in [4] and widely studied since then. It is fairly

easy to see (much more is known) that they have no free subgroup

of finite index unless 𝑝𝑞 = 0 [18]. As a consequence, in both cases

of the dichotomy, GL(2,Z) has infinite index in 𝐺 . Actually, we

prove more, namely, if𝐺 contains a matrix of the form

(
𝑟1 0

0 𝑟2

)
with

|𝑟1 | ≠ |𝑟2 | (which is the second case in the dichotomy), then 𝐺

contains some BS(1, 𝑞) for 𝑞 ≥ 2 which has infinite index in𝐺 . It is
wide open whether the membership to rational subsets of 𝐺 can

be decided in that second case. For example, let 𝑝 ≥ 2 be a prime,

and let 𝐺 ′
be generated by

(
0 −1
1 0

)
,

(
1 1

0 1

)
, and

(
1 0

0 𝑝

)
. In this case(

𝑝 0

0 𝑝−1

)
also belongs to 𝐺 ′

. Due to [5], the matrices

(
0 −1
1 0

)
,

(
1 1

0 1

)
,

and

(
𝑝 0

0 𝑝−1

)
generate the group SL(2,Z[1/𝑝]). 1 So 𝐺 ′

contains

SL(2,Z[1/𝑝]) as a subgroup. The structure SL(2,Z[1/𝑝]) is known
[39, II.1 Cor. 2] as an amalgam of two copies of SL(2,Z) over a
common subgroup of finite index. It is not even known how to

decide subgroup membership in such amalgams. Moreover,

(
1 0

0 𝑝

)
acts by conjugation on SL(2,Z[1/𝑝]), and since

(
1 0

0 𝑝

)
generates an

infinite cyclic group, we have that 𝐺 ′ = SL(2,Z[1/𝑝]) ⋊ Z. Hence,
even if subgroup membership for SL(2,Z[1/𝑝]) was decidable, then
it could still be undecidable in 𝐺 ′

. The situation is better for the

subgroup UT(2,Z[1/𝑝]) ⋊Z � 𝑍 [1/𝑝] ⋊Z � BS(1, 𝑝) of𝐺 ′
(which

is generated by

(
1 1

0 1

)
and

(
1 0

0 𝑝

)
) because the subgroup membership

is decidable in f.g. metabelian groups [36].
2

The complicated structures of simple examples of subgroups in

SL(2,Q) and GL(2,Q) provide strong reasons to believe that the

membership in rational sets becomes undecidable for subgroups

of GL(2,Q), in general. The dichotomy result Thm. 4.1 makes that

very concrete. It led us in the direction where we came up with a

new, but natural subclass of rational subsets. It is the class of flat
rational sets Frat(𝑀, 𝑁 ). The new class satisfies surprisingly good

properties. Frat(𝑀, 𝑁 ) is a relative notion where 𝑁 is a submonoid

of 𝑀 . It consists of all finite unions of the form 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 ,
where 𝑔𝑖 ∈ 𝑀 and 𝐿𝑖 ∈ Rat(𝑁 ). Of particular interest in our con-

text is the class Frat(𝐺,𝐻 ) where 𝐻 and 𝐺 are f.g. groups, Rat(𝐻 )
forms a Boolean algebra, and 𝐺 is the commensurator

3
of 𝐻 . In

this case Thm. 3.3 shows that Frat(𝐺,𝐻 ) forms a relative Boolean

algebra, i.e., it satisfies 𝐿, 𝐾 ∈ Frat(𝐺,𝐻 ) =⇒ 𝐿 \ 𝐾 ∈ Frat(𝐺,𝐻 ).
Under some mild effectiveness assumptions this means that the

1
For the notation Z[1/𝑝 ] and some elementary calculations see Sec. 6.

2
Decidability of membership for rational subsets in BS(1, 𝑞) for 𝑞 ≥ 2 was shown

only very recently by Cadilhac, Chistikov, and Zetzsche in [10].

3
The notion of commensurator is a standard concept in group theory which includes

many more than matrix groups; the formal definition is given in Sec. 2.1.

emptiness of finite Boolean combinations of sets in Frat(𝐺,𝐻 ) can
be decided. Thus, we have an abstract general condition to de-

cide such questions for a natural subclass of all rational sets in 𝐺

where the whole class Rat(𝐺) need not be an effective Boolean

algebra. The immediate application in the present paper concerns

Frat(GL(2,Q),GL(2,Z)), see Thm. 3.3 and Cor. 3.4. For example,

GL(2,Z) × Z appears in GL(2,Q) and Rat(GL(2,Z) × Z) is not an
effective Boolean algebra. Still the smaller class of flat rational sets

Frat(GL(2,Z) × Z ,GL(2,Z)) is a relative Boolean algebra. In or-

der to apply Thm. 3.3, we need Rat(𝐻 ) to be an effective relative

Boolean algebra. It happens to be an effective Boolean algebra for

virtually free groups and many other groups. This class includes, for

example, all f.g. abelian groups, and it is closed under free products.

The power of flat rational sets is even more apparent in the con-

text of the membership problem for rational subsets ofGL(2,Q). Let
𝑃 (2,Q) denote the monoidGL(2,Z)∪{ℎ ∈ GL(2,Q) | |det(ℎ) | > 1};
then Thm. 3.6 states that we can solve the membership problem

“𝑔 ∈ 𝑅?” for all 𝑔 ∈ GL(2,Q) and all 𝑅 ∈ Frat(GL(2,Q), 𝑃 (2,Q)).
Thm. 3.6 generalizes the main result in [34].

Let us summarize the statements about groups𝐺 sitting between

GL(2,Z) and GL(2,Q). Our current knowledge is as follows. There
is some evidence that membership in rational subsets of 𝐺 is decid-

able if and only if 𝐺 doesn’t contain any

(
𝑟1 0

0 𝑟2

)
where |𝑟1 | ≠ |𝑟2 |.

However, we can always decide the membership problem for all

𝐿 ∈ Frat(GL(2,Q), 𝑃 (2,Q)). Moreover, it might be that such a posi-

tive result is close to the border of decidability.

We also consider singular matrices and generalize the main re-

sult of [35] as follows. Let 𝑔 be a singular matrix in 𝑀 (2,Q) and
let 𝑃 be the submonoid generated by

{(
𝑟 0

0 𝑟

) �� 𝑟 ∈ N} ∪ GL(2,Z) ∪
{ℎ ∈ 𝑀 (2,Z) | det(ℎ) = 0}. Then we can decide the membership

problem “𝑔 ∈ 𝑅?” for all 𝑅 ∈ Frat(𝑀 (2,Q), 𝑃).
Our paper concentrates on decidability. For the complexity of

our algorithms with respect to binary encoding of matrices a trivial

upper bound is exponential space. This follows, for instance, from

[38]. We conjecture that membership for flat rational subsets of

GL(2,Q) over GL(2,Z) is in NP and that the emptiness problem for

Boolean combinations of such sets is in PSPACE.

The following facts about complexities are known: [20] shows

that the subgroup membership problem is decidable in polynomial

time for matrices from the modular group PSL(2,Z). In [8], Thm. 5.2

says that membership for rational subsets for PSL(2,Z) is in NP;

and Cor. 5.2 states that the problem ”1 ∈ {𝑀1, . . . , 𝑀𝑛}∗?” is NP-
complete for SL(2,Z).

Note that solving the membership problem for rational sets plays

an important role in modern group theory as highlighted for exam-

ple in [41] and used in [13].

2 PRELIMINARIES
By𝑀 (𝑛, 𝑅) we denote the ring of 𝑛 × 𝑛 matrices over a commuta-

tive ring 𝑅, and det : 𝑀 (𝑛, 𝑅) → 𝑅 is the determinant. By GL(𝑛, 𝑅)
we mean the group of invertible matrices, that is, the matrices

𝑔 ∈ 𝑀 (𝑛, 𝑅) for which det(𝑔) is a unit in 𝑅. By SL(𝑛, 𝑅) we denote
the normal subgroup det

−1 (1) of GL(𝑛, 𝑅), called the special lin-
ear group. Explicit calculation for SL(2,Z) and for special linear

groups over rings of p-adic numbers and function fields are e.g.
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in [39]. BS(𝑝, 𝑞) denotes the Baumslag-Solitar group BS(𝑝, 𝑞) =

⟨𝑎, 𝑡 | 𝑡𝑎𝑝𝑡−1 = 𝑎𝑞⟩.
For groups (and more generally for monoids) we write 𝑁 ≤ 𝑀

if 𝑁 is a submonoid of 𝑀 and 𝑁 < 𝑀 if 𝑁 ≤ 𝑀 but 𝑁 ≠ 𝑀 . If

𝑀 is a monoid, then 𝑍 (𝑀) denotes the center of 𝑀 , that is, the

submonoid of elements which commute with all elements in𝑀 . A

subsemigroup 𝐼 of a monoid𝑀 is an ideal if𝑀 𝐼 𝑀 ⊆ 𝐼 .

2.1 Smith normal forms and commensurators
The standard application for all our results is GL(2,Q), but the
results are more general and have the potential to go far beyond.

Let 𝑛 ∈ N. It is a classical fact from linear algebra that each nonzero

matrix 𝑔 ∈ 𝑀 (𝑛,Q) admits a Smith normal form. This is a factoriza-

tion 𝑔 = 𝑟 𝑒 𝑠𝑞 𝑓 such that 𝑟 ∈ Q∗ with 𝑟 > 0, 𝑒, 𝑓 ∈ SL(𝑛,Z), and
𝑞 ∈ Z where 𝑠𝑞 =

(
1 0

0 𝑞

)
. The matrices 𝑒 and 𝑓 in the factorization

are not unique, but both the numbers 𝑟 and 𝑞 are. The existence

and uniqueness of 𝑟 and 𝑠𝑞 are easy to see by the corresponding

statement for integer matrices. Clearly, 𝑟2𝑞 = det(𝑔). So, for 𝑔 ≠ 0,

the sign of det(𝑔) is determined by the sign of 𝑞. It is known that

the Smith normal form can be computed in polynomial time [23].

The notion of “commensurator” is well established in group

theory. Let 𝐻 be a subgroup in 𝐺 , then the commensurator of 𝐻 in

𝐺 is the set of all 𝑔 ∈ 𝐺 such that 𝑔𝐻𝑔−1 ∩ 𝐻 has finite index in 𝐻 .

This also implies that 𝑔𝐻𝑔−1 ∩ 𝐻 has finite index in 𝑔𝐻𝑔−1, too. If
𝐻 has finite index in 𝐺 , then 𝐺 is always a commensurator of 𝐻

because the normal subgroup 𝑁 =
⋂ {

𝑔𝐻𝑔−1
��𝑔 ∈ 𝐺

}
is of finite

index in 𝐺 if and only if 𝐺/𝐻 is finite.

Moreover, if 𝐻 ≤ 𝐻 ′
is of finite index and 𝐻 ′ ≤ 𝐺 ′ ≤ 𝐺 such

that𝐺 is a commensurator of 𝐻 , then𝐺 ′
is a commensurator of 𝐻 ′

.

The notion of a commensurator pops up naturally in our context.

Indeed, let𝐻 = SL(2,Z) and write 𝑔 ∈ GL(2,Q) in its Smith normal

form 𝑔 = 𝑟 𝑒 𝑠𝑞 𝑓 . Then the index of 𝑔𝐻𝑔−1 ∩𝐻 in 𝐻 is the same as

the index of 𝑠𝑞𝐻𝑠
−1
𝑞 ∩𝐻 in𝐻 ; and every matrix of the form

(
𝑎 𝑏/𝑞
𝑞𝑐 𝑑

)
is in 𝑠𝑞𝐻𝑠

−1
𝑞 if

(
𝑎 𝑏
𝑐 𝑑

)
∈ SL(2,Z). Thus, the index of 𝑠𝑞𝐻𝑠−1𝑞 ∩𝐻 in

𝐻 is bounded by the size of the finite group SL(𝑛,Z/𝑞Z). For 𝑛 = 2

this size is in O(𝑞3). It follows that GL(2,Q) is the commensurator

of SL(2,Z), and hence of GL(2,Z). In fact, it is known that GL(𝑛,Q)
is the commensurator of SL(𝑛,Z) for all 𝑛 ∈ N, e.g., see [22].

2.2 Rational and recognizable sets
The results in this section are not new. An exception is however

Lem. 2.6. We follow the standard notation as in Eilenberg [16].

Let 𝑀 be any monoid, then Rat(𝑀) has the following inductive

definition using rational (aka regular) expressions.

(1) |𝐿 | < ∞, 𝐿 ⊆ 𝑀 =⇒ 𝐿 ∈ Rat(𝑀).
(2) 𝐿1, 𝐿2 ∈ Rat(𝑀) =⇒ 𝐿1 ∪ 𝐿2, 𝐿1 · 𝐿2, 𝐿∗

1
∈ Rat(𝑀).

For 𝐿 ⊆ 𝑀 the set 𝐿∗ denotes the submonoid of 𝑀 which is gen-

erated by 𝐿. The submonoid 𝐿∗ is also called the Kleene-star of 𝐿.
Note that the definition of Rat(𝑀) is intrinsic without reference
to any generating set. It is convenient to define simultaneously a

basis 𝐵(𝐿) for 𝐿 (more precisely for a given rational expression):

If |𝐿 | < ∞, then 𝐵(𝐿) = 𝐿. Moreover, 𝐵(𝐿1 ∪ 𝐿2) = 𝐵(𝐿1) ∪ 𝐵(𝐿2),
𝐵(𝐿1 · 𝐿2) = 𝐵(𝐿1) ∪ 𝐵(𝐿2) if both 𝐿1 and 𝐿2 are nonempty, and

𝐵(𝐿1 · 𝐿2) = ∅ otherwise. Finally, 𝐵(𝐿∗) = 𝐵(𝐿) ∪ {1}. Since

𝐵(𝐿) is finite, 𝐿 is a subset of the f.g. submonoid 𝐵(𝐿)∗. Note that
𝐵(𝐿) = ∅ ⇐⇒ 𝐿 = ∅, hence the emptiness problem is decidable

for rational subsets of𝑀 if, for example, they are given by rational

expressions.

Definition 2.1. Let𝑀 be a monoid.
4
The membership problem for

rational subsets is defined as follows: given 𝑔 ∈ 𝑀 and 𝑅 ∈ RAT(𝑀),
decide whether 𝑔 ∈ 𝑅.

Definition 2.2. Let C be a family of subsets of𝑀 . We say that C
is a relative Boolean algebra if it is closed under finite unions and

𝐾, 𝐿 ∈ C implies 𝐾 \ 𝐿 ∈ C. It is an effective relative Boolean algebra
if first, every 𝐿 ∈ C is given by an effective description and second,

for 𝐿, 𝐾 ∈ C the union 𝐿 ∪ 𝐾 and the relative complement 𝐾 \ 𝐿
are computable. If additionally,𝑀 belongs to C, then C is called an

(effective) Boolean algebra.

By definition, a relative Boolean algebra is closed under finite

unions, it follows that it is closed under finite intersection, too.

Note that Rat(Q) is a relative Boolean algebra because every

finitely generated subgroup is isomorphic to Z. It is not a Boolean
algebra by Prop. 2.4 because Q ∉ Rat(Q) as (Q, +) is not f.g.

Proposition 2.3. The class of monoids𝑀 for which Rat(𝑀) is an
effective Boolean algebra satisfies the following properties:

(1) It contains only f.g. monoids. (Trivial.)
(2) It contains all f.g. free monoids, f.g. free groups, and f.g. abelian

monoids [9, 17, 24].
(3) It contains all f.g. virtually free groups [38, 40].
(4) It is closed under the operation of free product. [37].

We also use the following well-known fact from [2].

Proposition 2.4. Let 𝐺 be a group. If a subgroup 𝐻 is in Rat(𝐺),
then 𝐻 is finitely generated.

The family of recognizable subsets Rec(𝑀) is defined as follows.

We have 𝐿 ∈ Rec(𝑀) if and only if there is a homomorphism

𝜑 : 𝑀 → 𝑁 such that |𝑁 | < ∞ and 𝜑−1𝜑 (𝐿) = 𝐿.
The following assertions are well-known and easy to show [16].

(1) Theorem of McKnight [30]: 𝑀 is finitely generated ⇐⇒
Rec(𝑀) ⊆ Rat(𝑀).

(2) 𝐿, 𝐾 ∈ Rat(𝑀) doesn’t imply 𝐿 ∩ 𝐾 ∈ Rat(𝑀), in general.

(3) 𝐿 ∈ Rec(𝑀), 𝐾 ∈ Rat(𝑀) =⇒ 𝐿 ∩ 𝐾 ∈ Rat(𝑀).
(4) Let 𝐻 be a subgroup of a group 𝐺 . Then |𝐺/𝐻 | < ∞ ⇐⇒

𝐻 ∈ Rec(𝐺).
The following (well-known) consequence is easy to show.

Corollary 2.5. Let 𝐺 be any group and 𝐻 ≤ 𝐺 be a subgroup of
finite index. Then {𝐿 ∩ 𝐻 | 𝐿 ∈ Rat(𝐺)} = {𝐿 ⊆ 𝐻 | 𝐿 ∈ Rat(𝐺)} .

Cor. 2.5 doesn’t hold if 𝐻 has infinite index in 𝐺 . For example, it

fails for 𝐹2 × Z = 𝐹 (𝑎, 𝑏) × 𝐹 (𝑐) which does not have the so-called

Howson property: there are f.g. subgroups 𝐻,𝐾 such that 𝐻 ∩ 𝐾 is

not finitely generated.

The assertion of Lem. 2.6 below is not obvious. It was proved

first under the assumption that 𝐻 has finite index in 𝐺 , [19, 38, 40].

We show that this assumption is not necessary.
5

4
If𝑀 is not f.g., then we assume that all elements in𝑀 have an effective representation,

like in GL(2,Q) .
5
Sénizergues has a proof of Lem. 2.6 using finite transducers, personal communication.
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Lemma 2.6. Let 𝐺 be any group and 𝐻 ≤ 𝐺 be a subgroup. Then

{𝐿 ⊆ 𝐻 | 𝐿 ∈ Rat(𝐺)} = Rat(𝐻 ).

Moreover, suppose (i) that 𝐺 is a f.g. group with decidable word
problem and (ii) that the question “𝑔 ∈ 𝐻?” is decidable for 𝑔 ∈ 𝐺 .
Then for any NFA 𝐴 with 𝑛 states and labels in𝐺 that accepts 𝐿 ⊆ 𝐻 ,
we can effectively construct an NFA 𝐴′ with 𝑛 states and labels in 𝐻
such that 𝐴′ also accepts 𝐿.

Proof. Let 𝑅 ⊆ 𝐺 be such that, first, 1 ∈ 𝑅 and, second, each

right coset 𝐻𝑟 ∈ 𝐻\𝐺 is represented by exactly one 𝑟 ∈ 𝑅.
Let 𝐿 ⊆ 𝐻 and 𝐿 = 𝐿(𝐴) for an NFA 𝐴 with state set 𝑄 . Since

𝐺 = ⟨𝐻 ∪ 𝑅⟩ as a monoid and since 1 ∈ 𝑅 and 1 ∈ 𝐻 wemay assume

that all transition are labeled by elements from 𝐺 having the form

𝑠𝑎 with 𝑠 ∈ 𝑅 and 𝑎 ∈ 𝐻 . Moreover, we may assume that every state

𝑝 is on some accepting path. Since there are only finitely many

transitions there are finite subsets 𝐻 ′ ⊆ 𝐻 and 𝑆 ⊆ 𝑅 such that if

𝑠𝑎 with 𝑠 ∈ 𝑅 labels a transition, then 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐻 ′
. Moreover,

𝐺 ′ = ⟨𝐻 ′ ∪ 𝑆⟩ is a f.g. subgroup 𝐺 ′ ≤ 𝐺 such that 𝐿 ∈ Rat(𝐺 ′).
Assume we read from some initial state a word 𝑢 over the alpha-

bet 𝐻 ′ ∪ 𝑆 such that reading that word leads to the state 𝑝 with

𝑢 ∈ 𝐻𝑟 for 𝑟 ∈ 𝑅. Then there is some 𝑓 ∈ 𝐺 which leads us to a final

state. Thus, 𝑢𝑓 ∈ 𝐿(𝐴) ⊆ 𝐻 , and therefore 𝑢 ∈ 𝐻 𝑓 −1. This means

𝐻 𝑓 −1 = 𝐻𝑟 and therefore 𝑟 doesn’t depend on 𝑢. It depends on 𝑝

only: each state 𝑝 ∈ 𝑄 “knows” its value 𝑟 = 𝑟 (𝑝) ∈ 𝑅. If 𝑢 ′ is any
word which we can read from the initial state to 𝑝 , then𝑢 ′ ∈ 𝐻𝑟 (𝑝).
Moreover, if 𝑝 is any initial or final state, then we have 𝑟 (𝑝) = 1.

This will show that we only need the finite subset 𝑅′ of 𝑅. The
set 𝑅′ contains 𝑆 and all 𝑟 ∈ 𝑅 such that 𝐻 𝑓 −1𝑝 = 𝐻𝑟 where 𝑓𝑝

is the label of a shortest path from a state 𝑝 to a final state. Let

𝑟 = 𝑟 (𝑝) ∈ 𝑅′ for 𝑝 ∈ 𝑄 . We introduce exactly one new state (𝑝, 𝑟 )

with transitions 𝑝
𝑟−1−→ (𝑝, 𝑟 ) and (𝑝, 𝑟 ) 𝑟−→ 𝑝 . This does not change

the language.

Now for each outgoing transition 𝑝
𝑠𝑎−→ 𝑞 with 𝑟 = 𝑟 (𝑝) and

𝑡 = 𝑟 (𝑞) ∈ 𝑅′ define 𝑏 ∈ 𝐻 by the equation 𝑏 = 𝑟𝑠𝑎𝑡−1. Recall if
we read 𝑢 reaching 𝑝 , then 𝑢𝑟−1 ∈ 𝐻 and 𝑢𝑠𝑎𝑡−1 ∈ 𝐻 . Therefore,
𝑢𝑟−1𝑟𝑠𝑎𝑡−1 ∈ 𝐻 and hence 𝑏 ∈ 𝐻 . We add a transition

(𝑝, 𝑟 ) 𝑏−→ (𝑞, 𝑡).

This doesn’t change the language as 𝑏 = 𝑟𝑠𝑎𝑡−1 in𝐺 and before we

added the transition there was a path (𝑝, 𝑟 ) 𝑟−→ 𝑝
𝑠𝑎−→ 𝑞

𝑡−1−→ (𝑞, 𝑡)
as can be seen in the following picture:

(𝑝, 𝑟 ) (𝑞, 𝑡)

𝑝 𝑞

𝑏

𝑠𝑎
𝑟−1𝑟 𝑡−1𝑡

Now, the larger NFA still accepts 𝐿, but the crucial point is that for

𝑢 ∈ 𝐿(𝐴) we can accept the same element in𝐺 by reading just labels

from 𝐻 . Indeed, consider any path 𝑝0
𝑠1𝑎1−→ 𝑝1 · · ·

𝑠𝑘𝑎𝑘−→ 𝑝𝑘 , where

𝑘 ≥ 0 and 𝑝0 is an initial. We claim that the new NFA contains a

path labeled by 𝑏1 · · ·𝑏𝑘 with 𝑏1, . . . , 𝑏𝑘 ∈ 𝐻 from 𝑝0 to (𝑝𝑘 , 𝑟 (𝑝𝑘 ))
such that 𝑏1 · · ·𝑏𝑘 = 𝑠1𝑎1 · · · 𝑠𝑘𝑎𝑘𝑟 (𝑝𝑘 )−1 .

This holds for 𝑘 = 0 because 𝑟 (𝑝0) = 1 and there is a transition

with label 1 from 𝑝0 to (𝑝0, 1). Let 𝑘 ≥ 1. By induction the claim

holds for 𝑘−1. Inspecting the figure above, where 𝑏 = 𝑏𝑘 , 𝑠𝑎 = 𝑠𝑘𝑎𝑘 ,

(𝑝, 𝑟 ) = (𝑝𝑘−1, 𝑟 (𝑝𝑘−1)) and (𝑞, 𝑡) = (𝑝𝑘 , 𝑟 (𝑝𝑘 )), we see that the

claim holds for 𝑘 since 𝑟 (𝑝𝑘−1)−1𝑏𝑘 = 𝑠𝑘𝑎𝑘𝑟 (𝑝𝑘 )−1; and so:

𝑏1 · · ·𝑏𝑘−1𝑏𝑘 = 𝑠1𝑎1 · · · 𝑠𝑘−1𝑎𝑘−1𝑟 (𝑝𝑘−1)−1𝑏𝑘
= 𝑠1𝑎1 · · · 𝑠𝑘−1𝑎𝑘−1𝑠𝑘𝑎𝑘𝑟 (𝑝𝑘 )−1 .

We are done, since 𝑟 (𝑝𝑘 ) = 1 whenever 𝑝𝑘 is final and hence there

is a transition with label 1 from (𝑝𝑘 , 1) to 𝑝𝑘 .
Now we can remove all original states since they are good for

nothing anymore by making (𝑝, 1) initial (resp. final) if and only if

𝑝 was initial (resp. final). Let us denote the new NFA by 𝐴′
. Then

𝐴′
has exactly the same number of states as 𝐴.

This shows the non-effective version for all groups 𝐺 with sub-

groups 𝐻 . Finally, in order to make the construction effective it is

sufficient that, first,𝐺 is f.g. and has a decidable word problem and,

second, that the question “𝑔 ∈ 𝐻?” is decidable for 𝑔 ∈ 𝐺 . □

Proposition 2.7. Let𝐻 be a subgroup of finite index in a f.g. group
𝐺 . If the membership problem for rational subsets of 𝐻 is decidable,
then it is decidable for rational subsets of 𝐺 .

Proof. Since 𝐻 is of finite index, there is a normal subgroup 𝑁

of finite index in𝐺 such that 𝑁 ≤ 𝐻 ≤ 𝐺 , [28]. Using the canonical
homomorphism from 𝐺 to 𝐺/𝑁 we see that 𝐻 is recognizable.

Hence, “𝑔 ∈ 𝐻?” is decidable. We want to decide “𝑔 ∈ 𝑅?” for

some 𝑅 ∈ Rat(𝐺). Suppose 𝑢1, . . . , 𝑢𝑘 are all representatives of

right cosets of 𝐻 in 𝐺 . Choose 𝑖 such that 𝑔𝑢−1
𝑖

∈ 𝐻 . Then 𝑔 ∈ 𝑅
if and only if 𝑔𝑢−1

𝑖
∈ 𝑅𝑢−1

𝑖
∩ 𝐻 . Since 𝐻 is recognizable, we have

𝑅𝑢−1
𝑖

∩𝐻 ∈ Rat(𝐺). By Lem. 2.6, we have 𝑅𝑢−1
𝑖

∩𝐻 ∈ Rat(𝐻 ); and
hence we can decide whether 𝑔 ∈ 𝑅. □

3 FLAT RATIONAL SETS
The best situation is when Rat(𝑀) is an effective Boolean algebra

because in this case all decision problems we are studying here are

decidable. However, our focus is on matrices over the rational or

integer numbers, in which case such a strong assertion is either

wrong or not known to be true. Our goal is to search for weaker

conditions under which it becomes possible to decide emptiness

of finite Boolean combinations of rational sets or (even weaker) to

decide membership in rational sets. Again, in various interesting

cases the membership problem in rational subsets is either unde-

cidable or not known to be decidable. The most prominent example

is the direct product 𝐹2 × 𝐹2 of two free groups of rank 2 in which,

due to the construction of Mihailova [31], there exists a finitely

generated subgroup with undecidable membership problem.

We introduce a notion of flat rational sets and show that the

membership problem and (even stronger) the emptiness problem for

Boolean combinations of flat rational sets are decidable in GL(2,Q).

Definition 3.1. Let𝑁 be a submonoid of𝑀 .We say that 𝐿 ⊆ 𝑀 is a

flat rational subset of𝑀 relative to𝑁 (or over𝑁 ) if 𝐿 is a finite union

of languages of the form 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 where all 𝐿𝑖 ∈ Rat(𝑁 ) and
𝑔𝑖 ∈ 𝑀 . The family of these sets is denoted by Frat(𝑀, 𝑁 ).

In our applications we use flat rational sets in the following

setting: 𝐻 is a subgroup of 𝐺 , and 𝐺 sits inside a monoid𝑀 , where

𝑀 \𝐺 is an ideal (possibly empty). For example, 𝐻 = GL(2,Z) <
𝐺 ≤ GL(2,Q) and𝑀 \𝐺 is a (possibly empty) semigroup of singular
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matrices. In such a situation there is an equivalent characterization

of flat rational sets in𝑀 with respect to 𝐻 . Prop. 3.2 shows it can

be defined as the family of rational sets when the Kleene-star is

restricted to subsets which belong to the submonoid 𝐻 .

Proposition 3.2. Let 𝐻 be a subgroup of 𝐺 and 𝐺 be a subgroup
of a monoid𝑀 such that𝑀 \𝐺 is an ideal. Then the family Frat(𝑀,𝐻 )
is the smallest family R of subsets of𝑀 such that the following holds.

• R contains all finite subsets of𝑀 ,
• R is closed under finite union and concatenation,
• R is closed under taking the Kleene-star over subsets of 𝐻
which belong to R.

Proof. Clearly, all flat rational sets relative to 𝐻 are contained

in R. To prove inclusion in the other direction, we need to show

that the family of flat rational subsets of𝑀 relative to𝐻 (i) contains

all finite subsets of𝑀 , (ii) is closed under finite union and concate-

nation, and (iii) is closed under taking the Kleene-star over subsets

of 𝐻 . The first two conditions are obvious. To show (iii), let 𝐿 be a

flat rational set relative to𝐻 such that 𝐿 ⊆ 𝐻 . Recall that 𝐿 is a finite

union of languages 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 , where ∅ ≠ 𝐿𝑖 ∈ Rat(𝐻 ) and
𝑔𝑖 ∈ 𝑀 . If𝑔𝑖 ∈ 𝑀\𝐺 for some 𝑖 , thenwe have 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 \𝐺 ≠ ∅
because𝑀 \𝐺 is an ideal, and hence 𝐿 ̸⊆ 𝐻 .

So if 𝐿 ⊆ 𝐻 , then all 𝑔𝑖 ∈ 𝐺 and 𝐿 ∈ Rat(𝐺). By Lem. 2.6, 𝐿 is

a rational subset of 𝐻 , and hence 𝐿∗ ∈ Rat(𝐻 ). In particular, 𝐿∗ is
flat rational relative to 𝐻 . □

Theorem 3.3. Let𝐻 be a subgroup of a f.g. group𝐺 with decidable
word problem such that the following conditions hold:

• Rat(𝐻 ) is an effective relative Boolean algebra.6

• 𝐺 is the commensurator of 𝐻 , and moreover for a given 𝑔 ∈ 𝐺
we can compute the index of 𝐻𝑔 in 𝐻 .

• The membership to 𝐻 (that is, “𝑔 ∈ 𝐻?”) is decidable.
Then Frat(𝐺,𝐻 ) forms an effective relative Boolean algebra. In

particular, given a finite Boolean combination 𝐵 of flat rational sets
of 𝐺 over 𝐻 , we can decide the emptiness of 𝐵.

Before proving Thm. 3.3 let us first state a consequence.

Corollary 3.4. Let 𝐵 ⊆ GL(2,Q) be a finite Boolean combination
of flat rational sets of GL(2,Q) over GL(2,Z), then we can decide the
emptiness of 𝐵.

Proof. It is a well-known classical fact that GL(2,Z) is a finitely
generated virtually free group, namely, it contains a free subgroup

of rank 2 and index 24. Hence Rat(GL(2,Z)) is an effective Boolean

algebra by [40]. Let𝐺 be a f.g. subgroup of GL(2,Q) that contains 𝐵.
Clearly,𝐺 has a decidable word problem. It is also well-known that

GL(2,Q) is the commensurator subgroup of GL(2,Z) in GL(2,Q).
Hence𝐺 is the commensurator ofGL(2,Z), too. Thus all hypotheses
of Thm. 3.3 are satisfied. □

A direct consequence of Cor. 3.4 is that we can decide the mem-

bership in flat rational subsets of GL(2,Q) over GL(2,Z). However
in Sec. 4 we explain why we are far away from knowing how to

decide the membership for all rational subsets of GL(2,Q).
For the proof of Thm. 3.3 we need the following observation.

6
Recall that this does not imply 𝐻 ∈ Rat(𝐻 ) : possibly 𝐻 it not f.g.

Lemma 3.5. Let 𝐿 ∈ Rat(𝐻 ) and 𝑔 ∈ 𝐺 . Recall that

𝐻𝑔 = 𝑔𝐻𝑔−1 ∩ 𝐻 =
{
ℎ ∈ 𝐻

��𝑔−1ℎ𝑔 ∈ 𝐻
}
.

Then under the assumptions of Thm. 3.3 we can compute an expression
for 𝑔−1 (𝐿 ∩ 𝐻𝑔)𝑔 ∈ Rat(𝐻 ).

Proof. Since 𝑔𝐻𝑔−1 ∩ 𝐻 is of finite index in 𝐻 , we can com-

pute the expression for 𝐿′ = 𝐿 ∩ 𝐻𝑔 ∈ Rat(𝐻𝑔) over a basis

𝐵′ ⊆ 𝐻𝑔 by Lem. 2.6. Now, for any 𝑔 and 𝐾 ∈ Rat(𝐻𝑔) we have
𝑔−1𝐾∗𝑔 = (𝑔−1𝐾𝑔)∗, 𝑔−1 (𝐿1𝐿2)𝑔 = 𝑔−1𝐿1𝑔𝑔−1𝐿2𝑔, and 𝑔−1 (𝐿1 ∪
𝐿2)𝑔 = 𝑔−1𝐿1𝑔∪𝑔−1𝐿2𝑔. Hence, we simply replace the basis 𝐵′ ⊆ 𝐻𝑔

by 𝑔−1𝐵′𝑔 ⊆ 𝐻 . This gives a rational expression for 𝑔−1 (𝐿 ∩𝐻𝑔)𝑔
over 𝐻 . □

Proof of Thm. 3.3. Let 𝑔 ∈ 𝐺 and 𝐾 ∈ Rat(𝐻 ). First, we claim
that we can rewrite 𝐾𝑔 ∈ Rat(𝐺) as a finite union of languages

𝑔′𝐾 ′
with 𝑔′ ∈ 𝐺 and 𝐾 ′ ∈ Rat(𝐻 ).

Note that we can compute a set 𝑈𝑔 ⊆ 𝐻 of left-representatives

such that 𝐻 =
⋃ {

𝑢𝐻𝑔

��𝑢 ∈ 𝑈𝑔
}
. Indeed, by assumption, the mem-

bership to 𝐻 is decidable, and hence the membership to 𝑔𝐻𝑔−1 and
to 𝐻𝑔 = 𝑔𝐻𝑔−1 ∩𝐻 is decidable, too. By the second assumption, we

can compute the index 𝑘 = |𝐻 : 𝐻𝑔 |. Thus we can enumerate the

elements of 𝐻 until we find 𝑘 elements that belong to 𝑘 different

left cosets of𝐻𝑔 . Checking if two elements belong to the same coset

is decidable since the membership to 𝐻𝑔 can be decided. Thus,

𝐾𝑔 =
⋃{

𝐾 ∩ 𝑢𝐻𝑔

��𝑢 ∈ 𝑈𝑔
}
𝑔 =

⋃{
𝑢𝑔𝑔−1 (𝑢−1𝐾 ∩ 𝐻𝑔)𝑔

��𝑢 ∈ 𝑈𝑔
}

=
⋃{

𝑔′𝑔−1 (𝑔𝑔′−1𝐾 ∩ 𝐻𝑔)𝑔
���𝑔′ ∈ 𝑈𝑔𝑔} .

Using Lem. 3.5 we obtain 𝑔−1 (𝑔𝑔′−1𝐾 ∩𝐻𝑔)𝑔 = 𝐾 ′ ∈ Rat(𝐻 ). This
shows the claim.

Let 𝐿 be a flat rational subset of 𝐺 , that is, 𝐿 is equal to a finite

union of languages 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 where all 𝐿𝑖 ∈ Rat(𝐻 ). Using
the claim, we can write 𝐿 as a finite union of languages 𝑔𝐾 with

𝑔 ∈ 𝐺 and 𝐾 ∈ Rat(𝐻 ). Since membership in𝐻 is decidable, we can

computably enumerate a set 𝑆 of all distinct representatives of the

right cosets of𝐻 , and moreover for each 𝑔 ∈ 𝐺 find a representative

𝑔′ ∈ 𝑆 such that 𝑔 ∈ 𝑔′𝐻 . Since 𝑔 = 𝑔′ℎ for some ℎ ∈ 𝐻 , we

can write 𝑔𝐾 = 𝑔′(ℎ𝐾), where ℎ𝐾 ∈ Rat(𝐻 ). Therefore, every flat

rational set 𝐿 can be written as a union 𝐿 =
⋃𝑛

𝑖=1 𝑔𝑖𝐾𝑖 , where 𝑔𝑖 ∈ 𝑆
and 𝐾𝑖 ∈ Rat(𝐻 ). Since 𝑔𝐾1 ∪ 𝑔𝐾2 = 𝑔(𝐾1 ∪ 𝐾2), we may assume

that all 𝑔𝑖 in the expression 𝐿 =
⋃𝑛

𝑖=1 𝑔𝑖𝐾𝑖 are different.

Now let 𝐿 and 𝑅 be two flat rational sets. By the above argument

we may assume that 𝐿 =
⋃𝑛

𝑖=1 𝑎𝑖𝐿𝑖 and 𝑅 =
⋃𝑚

𝑗=1 𝑏 𝑗𝑅 𝑗 , where

𝑎𝑖 , 𝑏 𝑗 ∈ 𝑆 and 𝐿𝑖 , 𝑅 𝑗 ∈ Rat(𝐻 ). Then we have 𝐿 \ 𝑅 =
⋃𝑛

𝑖=1

(
𝑎𝑖𝐿𝑖 \⋃𝑚

𝑗=1 𝑏 𝑗𝑅 𝑗
)
. Note that if 𝑎𝑖 ∉ {𝑏1, . . . , 𝑏𝑚}, then 𝑎𝑖𝐿𝑖 \

⋃𝑚
𝑗=1 𝑏 𝑗𝑅 𝑗 =

𝑎𝑖𝐿𝑖 , but if 𝑎𝑖 = 𝑏 𝑗 for some 𝑗 then 𝑎𝑖𝐿𝑖 \
⋃𝑚

𝑗=1 𝑏 𝑗𝑅 𝑗 = 𝑎𝑖 (𝐿𝑖 \
𝑅 𝑗 ). Since Rat(𝐻 ) is an effective relative Boolean algebra, we can

compute the rational expression for 𝐿𝑖 \ 𝑅 𝑗 in 𝐻 . Hence we can
compute the flat rational expression for 𝐿 \ 𝑅. □

Below we give one more application of Thm. 3.3. Let 𝑃 (2,Q)
denote the following submonoid of GL(2,Q) of matrices:

𝑃 (2,Q) = {ℎ ∈ GL(2,Q) | | det(ℎ) | > 1} ∪ GL(2,Z).

Note that 𝑃 (2,Q) contains all nonsingular matrices from𝑀 (2,Z).
So, the next theorem is a generalization of the main result in [34].



ISSAC ’20, July 20–23, 2020, Kalamata, Greece Volker Diekert, Igor Potapov, and Pavel Semukhin

Theorem 3.6. For any 𝑔 ∈ GL(2,Q) and for any flat rational
subset 𝑅 of GL(2,Q) relative to 𝑃 (2,Q), it is decidable whether 𝑔 ∈ 𝑅.

Proof. Writing 𝑔 in Smith normal form, we obtain

𝑔 = 𝑐𝑟𝑒𝑠𝑛 𝑓 = 𝑐𝑟𝑒
(
1 0

0 𝑛

)
𝑓 ,

where 𝑐𝑟 =
(
𝑟 0

0 𝑟

)
is central, 𝑒, 𝑓 ∈ SL(2,Z) and 𝑟 ∈ Q. Replacing 𝑅

by 𝑟−1𝑒−1𝑅𝑓 −1, we may assume that 𝑔 = 𝑠𝑛 with 0 ≠ 𝑛 ∈ Z. More-

over, by making guesses we may assume that 𝑅 = 𝑅0𝑔1𝑅1 · · ·𝑔𝑡𝑅𝑡
where 𝑅𝑖 ∈ Rat(𝑃 (2,Q)) and each 𝑔𝑖 is of the form 𝑔𝑖 =

(
𝑟 0

0 𝑟

)
with

0 < 𝑟 < 1. Multiplying 𝑔 and 𝑅 with some appropriate natural

number, we can assume that 𝑔 =
(
𝑚 0

0 𝑛

)
with𝑚,𝑛 ∈ N \ {0} and

𝑅 ∈ Rat(𝑃 (2,Q)).
Without restriction we may assume that 𝑅 is given by a trim NFA

A with state space𝑄 , initial states 𝐼 and final states 𝐹 . (Trim means

that every state is on some accepting path.) Note that a path in A
accepting 𝑔 can use transitions with labels from 𝑃 (2,Q) \ GL(2,Z)
at most 𝑘 =

⌊
log(𝑚𝑛)
log 𝑡

⌋
many times, where

𝑡 = min{ | det(ℎ) | : | det(ℎ) | > 1 and ℎ appears as

a label of a transition in A }.

Consider a new automaton B with state space𝑄 × {0, . . . , 𝑘}, initial
states 𝐼 × {0} and final states 𝐹 × {0, . . . , 𝑘}. The transitions of B
are defined as follows:

• for each transition 𝑝
𝑔

−→ 𝑞 in A with 𝑔 ∈ GL(2,Z), there is
a transition (𝑝, 𝑖)

𝑔
−→ (𝑞, 𝑖) in B for every 𝑖 = 0, . . . , 𝑘 ;

• for every transition 𝑝
𝑔

−→ 𝑞 inA with𝑔 ∈ 𝑃 (2,Q) \GL(2,Z),
there is a transition (𝑝, 𝑖)

𝑔
−→ (𝑞, 𝑖 + 1) in B for every 𝑖 =

0, . . . , 𝑘 − 1.

The automatonB defines a flat rational subset 𝑅′ ⊆ 𝑅 overGL(2,Z)
such that 𝑔 ∈ 𝑅′ ⇐⇒ 𝑔 ∈ 𝑅. So, using Thm. 3.3, we can decide

whether 𝑔 ∈ 𝑅′ and hence whether 𝑔 ∈ 𝑅. □

4 DICHOTOMY IN GL(2,Q)
Below we show a dichotomy result. To the best of the authors

knowledge the result has not been stated elsewhere. The dichotomy

shows that extending our decidability results beyond flat rational

sets over GL(2,Z) seems to be quite demanding.

Theorem 4.1. Let 𝐺 be a f.g. group such that GL(2,Z) < 𝐺 ≤
GL(2,Q). Then there are two mutually exclusive cases.

(1) 𝐺 is isomorphic to GL(2,Z) × Z𝑘 , with 𝑘 ≥ 1, and it does not
contain the Baumslag-Solitar group BS(1, 𝑞) for any 𝑞 ≥ 2.

(2) 𝐺 contains a subgroup which is an extension of infinite index
of BS(1, 𝑞) for some 𝑞 ≥ 2.

Proof. Let 𝐻 = GL(2,Z). There are two cases. In the first

case some finite generating set for 𝐺 contains only elements from

𝐻 and from the center 𝑍 (𝐺). Since GL(2,Z) ≤ 𝐺 we see that

𝑍 (𝐺) ≤
{(

𝑟 0

0 𝑟

) �� 𝑟 ∈ Q}. Moreover, since

( −1 0

0 −1
)
∈ 𝐻 , we may

assume in the fist case that 𝐺 is generated by 𝐻 and f.g. subgroup

𝑍 ≤
{(

𝑟 0

0 𝑟

) �� 𝑟 ∈ Q ∧ 𝑟 > 0

}
. The homomorphism 𝑔 ↦→ |det(𝑔) | em-

beds 𝑍 into the torsion free group {𝑟 ∈ Q∗ | 𝑟 > 0}. Hence, 𝑍 is

isomorphic to Z𝑘 for some 𝑘 ≥ 1. Since 𝑍 ∩𝐻 = {1}, the canonical
surjective homomorphism from 𝑍 × 𝐻 onto 𝐺 is an isomorphism.

In the second case we start with any generating set and we

write the generators in Smith normal form 𝑒

(
𝑟 0

0 𝑟𝑞

)
𝑓 . Since 𝑒, 𝑓 ∈

GL(2,Z) and GL(2,Z) < 𝐺 , without restriction, the generators are
either from GL(2,Z) or they have the form

(
𝑟 0

0 𝑟𝑞

)
with 𝑟 > 0 and

0 ≠ 𝑞 ∈ N. So, if we are not in the first case, there is at least one

generator 𝑠 =

(
𝑟 0

0 𝑟𝑞

)
where 𝑟 > 0 and 2 ≤ 𝑞 ∈ N.

Let BS be the subgroup of 𝐺 which is generated by

(
1 0

1 1

)
and

𝑠 and BS(1, 𝑞) be the Baumslag-Solitar group with generators 𝑏

and 𝑡 such that 𝑡𝑏𝑡−1 = 𝑏𝑞 . We have 𝑠
(
1 0

1 1

)
𝑠−1 =

(
1 0

1 1

)𝑞
. Hence,

there is a surjective homomorphism 𝜑 : BS(1, 𝑞) → BS such that

𝜑 (𝑡) = 𝑠 and 𝜑 (𝑏) =
(
1 0

1 1

)
. Let us show that 𝜑 is an isomorphism.

Every element𝑔 ∈ BS(1, 𝑞) can be written in the form 𝑡𝑘𝑏𝑥 𝑡𝑛 where

𝑘, 𝑥, 𝑛 are integers. Suppose 𝜑 (𝑡𝑘𝑏𝑥 𝑡𝑛) = 1. Then

(
1 0

𝑥 1

)
= 𝜑 (𝑏𝑥 ) =

𝜑 (𝑡−𝑘−𝑛) =
(
𝑟 0

0 𝑟𝑞

)−𝑘−𝑛
is a diagonal matrix. But then 𝑔 = 𝑡𝑚 and

𝜑 (𝑔) = 𝑠𝑚 = 1 implies 𝑚 = 0. Hence, 𝜑 is an isomorphism and

BS is the group BS(1, 𝑞). Moreover, consider any 𝑔 ∈ BS∩ SL(2,Z).
As above 𝑔 = 𝑠𝑘

(
1 0

1 1

)𝑥
𝑠𝑚 with 𝑥, 𝑘,𝑚 ∈ Z. Since by assumption

det(𝑔) = 1 we obtain𝑚 = −𝑘 and hence 𝑔 =

(
1 0

𝑞𝑘𝑥 1

)
∈
〈(

1 0

1 1

)〉
.

Therefore SL(2,Z) ∩ BS is the infinite cyclic group

〈(
1 0

1 1

)〉
= Z,

which has infinite index in SL(2,Z). It follows that 𝐺 contains an

extension of BS(1, 𝑞) of infinite index.
But this is not enough, we need to show that GL(2,Z) × Z𝑘

cannot contain BS(1, 𝑞), otherwise there is no dichotomy. Actually,

we do more: there is no abelian group 𝐴 such that BS(1, 𝑞) is a
subgroup of GL(2,Z) ×𝐴.

Assume by contradiction that it is. Then there are generators

𝑏 = (𝑎, 𝑥), 𝑡 = (𝑠,𝑦) ∈ GL(2,Z) × 𝐴 such that 𝑡𝑏𝑡−1 = 𝑏𝑞 . This

implies (𝑞 − 1)𝑥 = 0. Since 𝑞 ≥ 2, the element 𝑥 generates a

finite subgroup in 𝐴. Since 𝑏 generates an infinite cyclic group,

we conclude that 𝑎𝑚 ≠ 1 for all 𝑚 ≠ 0. Consider the canonical

projection 𝜑 of GL(2,Z) ×𝐴 onto GL(2,Z) such that 𝜑 (𝑏) = 𝑎 and
𝜑 (𝑡) = 𝑠 . We claim that the restriction of 𝜑 to ⟨𝑏, 𝑡⟩ is injective.

Let 𝜑 (𝑔) = 1 for 𝑔 ∈ ⟨𝑏, 𝑡⟩. As above we write 𝑔 = 𝑡𝑘𝑏𝑧𝑡𝑛 with

𝑧, 𝑘, 𝑛 ∈ Z. Then we have 𝑠𝑘𝑎𝑧𝑠𝑛 = 1 ∈ GL(2,Z); and therefore

𝑎𝑧 = 𝑠−𝑘−𝑛 . Hence 𝑎𝑧 commutes with 𝑠 . Hence 𝑎𝑧 = 𝑠𝑎𝑧𝑠−1 = 𝑎𝑞𝑧 .
We conclude 𝑎 (𝑞−1)𝑧 = 1. Since 𝑎𝑚 ≠ 1 for all𝑚 ≠ 0 and 𝑞 ≥ 2 we

have 𝑧 = 0. Hence 𝑔 = 𝑡𝑚 for some𝑚 ∈ Z. Since 𝜑 (𝑔) = 1, we know

𝑠𝑚 = 1. Therefore, 𝑡𝑚 = (𝑠𝑚,𝑚𝑦) acts trivially on 𝑏. But in BS(1, 𝑞)
this happens for 𝑚 = 0, only. This tells us that 𝜑 is injective on

⟨𝑏, 𝑡⟩, and the claim follows.

The above claim implies that BS(1, 𝑞) appears as a subgroup in

GL(2,Z). However, no virtually free group can contain BS(1, 𝑞) by
[18]

7
; and GL(2,Z) is virtually free. A contradiction. □

Proposition 4.2. Let𝐺 be isomorphic toGL(2,Z)×Z𝑘 with𝑘 ≥ 1.
Then, the question “𝐿 = 𝑅?” on input 𝐿, 𝑅 ∈ Rat(𝐺) is undecidable.
However, the question “𝑔 ∈ 𝑅?” on input 𝑔 ∈ 𝐺 and 𝑅 ∈ Rat(𝐺) is
decidable.

7
Actually, [18] shows a stronger result. If a Baumslag-Solitar group BS(𝑝,𝑞) appears
in a group𝐺 with 𝑝𝑞 ≠ 0, then𝐺 is not hyperbolic. The result is stronger since all f.g.

virtually free groups are hyperbolic.
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Proof. The group GL(2,Z) contains a free monoid {𝑎, 𝑏}∗ of

rank 2. Thus, under the conditions above, 𝐺 contains the free par-

tially commutative monoid𝑀 = {𝑎, 𝑏}∗ × {𝑐}∗. It is known that the

question “𝐿 = 𝑅?” on input 𝐿, 𝑅 ∈ Rat(𝐺) is undecidable for𝑀 [1].

For the decidability we use the fact that GL(2,Z) has a free

subgroup 𝐹 of rank two and index 24. By [27] the question “𝑔 ∈ 𝑅?”
is decidable in 𝐹 × Z𝑘 . Since 𝐹 × Z𝑘 is of finite index (actually 24)

in 𝐺 , the membership problem in 𝐺 is decidable by Prop. 2.7. □

Remark 1. Let𝐺 be a group extension ofGL(2,Z) insideGL(2,Q)
which is not isomorphic to GL(2,Z) × Z𝑘 for 𝑘 ≥ 0. Then, by

Thm. 4.1, the group 𝐺 contains an infinite extension of BS(1, 𝑞)
for 𝑞 ≥ 2. By [10] the membership in rational sets of BS(1, 𝑞) is
decidable. However, to date it is not clear how to extend this result

to infinite extensions of BS(1, 𝑞).

5 SINGULAR MATRICES
In this section we show that the membership problem is decidable

for flat rational sets containing singular matrices. This extends the

results of [35] which considers only integer matrices.

For 𝐻 ∈ GL(2,Z) and 𝑎 ∈ Z we let

𝑀𝑖 𝑗 (𝑎) =
{( 𝑔11 𝑔12

𝑔21 𝑔22

)
∈ 𝐻

��𝑔𝑖 𝑗 = 𝑎} ⊆ M(2,Z).

Throughout we will use Lem. 5.1; for a proof see [15, 35].

Lemma 5.1. The sets𝑀𝑖 𝑗 (𝑎) are rational for all 𝑖, 𝑗 and 𝑎 ∈ Z.

Theorem 5.2. Let 𝑃 be the submonoid of M(2,Q) which is gen-
erated by GL(2,Z), all central matrices

(
𝑟 0

0 𝑟

)
with 𝑟 ∈ N, and all

matrices ℎ ∈ M(2,Z) with det(ℎ) = 0. If 𝑅 ⊆ M(2,Q) is flat rational
over 𝑃 , then “𝑔 ∈ 𝑅?” is decidable for singular matrices 𝑔 ∈ M(2,Q).

Proof. Without restriction, 𝑅 is given by a trim NFA A over a

f.g. submonoid𝑀 of M(2,Q) such that transitions are labeled with

elements of 𝐻 or with matrices 𝑟𝑠𝑞 where 𝑞 ∈ N or 𝑟 ≥ 0. If 𝑔 = 0

and there is one transition labeled by 0, then we know 𝑔 ∈ 𝑅. For
𝑔 ≠ 0 we cannot use any transition labeled by 0. Hence without

restriction, if a transition is labeled by a rational number 𝑟 , then

𝑟 > 0. Using Smith normal form and writing 𝑟𝑠𝑞 as a product, in the

beginning all transitions are labeled either by a matrix in GL(2,Z)
or by a central matrix

(
𝑟 0

0 𝑟

)
or by 𝑠0 =

(
1 0

0 0

)
.

Since det(𝑔) = 0, the label 𝑠0 must be used at least once. By

writing 𝑅 as a finite union 𝑅1 ∪ 𝑅𝑚 and guessing the correct 𝑗 we

may assume without restriction that 𝑔 ∈ 𝑅 𝑗 = 𝑅 = 𝐿1𝑠0𝐿2 where

𝐿𝑖 ∈ Rat(𝑀). Note that the 𝐿𝑖 are just rational, and not assumed

to be flat rational. Throughout we use the following equation for

𝑟 ∈ Q and 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z:

𝑠0𝑟

(
𝑎 𝑏
𝑐 𝑑

)
𝑠0 = 𝑠0

(
𝑟𝑎 0

0 0

)
𝑠0 = 𝑠0𝑟𝑎𝑠0 = 𝑟𝑎𝑠0 . (1)

Now, we perform a Benois-type (cf. [9]) of “flooding-the-NFA”.

First Round. More transitions without changing the state set.

(1) For all states 𝑝, 𝑞 ofA consider the subautomatonB where 𝑝

is the unique initial and 𝑞 is the unique final state and where

all transitions are labeled by ℎ ∈ 𝐻 (all other are removed

from A). This defines a rational language 𝐿(𝑝, 𝑞) ∈ Rat(𝐻 ).
(2) Introduce for all states 𝑝, 𝑞 ofA an additional new transition

labeled by 𝐿(𝑝, 𝑞).

(3) If 𝑔 = 0 and 0 ∈ 𝐿(𝑝, 𝑞), then accept 𝑔 ∈ 𝑅. After that replace
all 𝐿(𝑝, 𝑞) by 𝐿(𝑝, 𝑞) \ {0}.

(4) If 1 ∈ 𝐿(𝑝, 𝑞), where 1 =
(
1 0

0 1

)
is the identity matrix, replace

𝐿(𝑝, 𝑞) by 𝐿(𝑝, 𝑞) \ {1} and add a new transition 𝑝
1−→ 𝑞.

After that we may assume that all accepting paths of A are as

follows:

𝑝1
𝐿1−→ 𝑞1

𝑟1𝑠0−→ 𝑝2
𝐿2−→ · · · 𝑟𝑘𝑠0−→ 𝑝𝑘

𝐿𝑘−→ 𝑞𝑘 (2)

where 𝑟𝑖 ∈ Q, 𝑟𝑖 > 0, and 0, 1 ∉ 𝐿𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . We may

assume without restriction that the transition 𝑝1
𝐿1−→ 𝑞1 is the only

transition leaving a unique initial state 𝑝1.

It is convenient to assume that the states are divided into two

sets: 𝑝-states where outgoing transitions are labeled by rational

subsets of𝐻 andwhich lead to𝑞-states; and𝑞-states where outgoing

transitions are labeled by 𝑟𝑠0 and lead to 𝑝-states. In particular,

𝑝𝑖 ≠ 𝑞 𝑗 for all 𝑖, 𝑗 .

Since 𝑅 is flat over 𝑃 , there is a constant 𝜌 depending on 𝑅

such that each accepting path as in (2) uses a transition labeled by

𝑟 =
(
𝑟 0

0 𝑟

)
with 𝑟 ∉ N at most 𝜌 times. Splitting 𝑅 again into a finite

union we may assume that all accepting paths have the form

𝑞0
𝑟−→ 𝑝1

𝐿1−→ 𝑞1
𝑟1𝑠0−→ 𝑝2

𝐿2−→ · · · 𝑟𝑘𝑠0−→ 𝑝𝑘
𝐿𝑘−→ 𝑞𝑘 (3)

where the 𝑟 ∈ Q, 𝑟 ≠ 0, 𝑟𝑖 ∈ N \ {0}, and 0, 1 ∉ 𝐿𝑖 ∈ Rat(𝑀). Here,
𝑞0 is a new unique initial state. We choose some 𝑧 ∈ Z such that

𝑟𝑧 ∈ N; and we aim to decide 𝑧𝑔 ∈ 𝑧𝑅. The NFA for 𝑧𝑅 is obtained

by making the unique 𝑝1-state initial again, to remove 𝑞0, and to

replace all outgoing transitions 𝑞1
𝑟1𝑠0−→ 𝑝2 by 𝑞1

𝑧𝑟1𝑠0−→ 𝑝2. After that

little excursion we are back at a situation as in (2). The difference

is that all 𝑟𝑖 are positive natural numbers. In order to have 𝑔 ∈ 𝑅,
we must have 𝑔 ∈ M(2,Z). So, we can assume that, too.

Phrased differently, without restriction from the very beginning

assume 𝑔 ∈ M(2,Z), det(𝑔) = 0, and A accepts 𝑅 such that all

accepting paths are as in (2) where all 𝑟𝑖 ∈ N \ {0}.
Let 𝑔 =

( 𝑔11 𝑔12
𝑔21 𝑔22

)
. We define a target value 𝑡 ∈ N by the greatest

common divisor of the numbers in {𝑔11, 𝑔12, 𝑔21, 𝑔22}.
We keep the following assertion as an invariant. If a transition

𝑞
𝑟𝑠0−→ appears in A, then 𝑟 divides 𝑡 .

Second Round. As long as possible, do the following.

• Choose a sequence of transitions 𝑞′
𝑟𝑠0−→ 𝑝

𝐿−→ 𝑞
𝑟 ′𝑠0−→ 𝑝 ′ and

an integer 𝑧 ∈ Z such that:

(1) 𝑧 = 0 ⇐⇒ 𝑔 = 0,

(2) the integer 𝑟𝑧𝑟 ′ divides 𝑡 ,
(3) we have 𝐿 ∩𝑀11 (𝑧) ≠ ∅,
(4) there is no transition 𝑞′

𝑟𝑧𝑟 ′−→ 𝑝 ′.

• Introduce an additional transition 𝑞′
𝑟𝑧𝑟 ′−→ 𝑝 ′.

It is clear that the procedure terminates since for 𝑔 ≠ 0 the target 𝑡

has only finitely many divisors. So, the number of integers 𝑟 , 𝑧, 𝑟 ′

such that 𝑟𝑧𝑟 ′ divides 𝑡 is finite for 𝑔 ≠ 0. For 𝑔 = 0 we have 𝑧 = 0

and 0 divides the target 0. The accepted language of A was not

changed. But now, every accepting path for 𝑔 can take short cuts.

As a consequence, we may assume that all accepting paths for 𝑔

have length three: 𝑝1
𝐿1−→ 𝑞1

𝑟𝑠0−→ 𝑝2
𝐿2−→ 𝑞2 . By guessing such a
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sequence of length three, we may assume that the NFA is equal to

that path with those four states and where 𝑟 divides 𝑡 .

We are ready to check whether 𝑔 ∈ 𝐿(A). Indeed, we know

that each matrix 𝑚 ∈ 𝐿(A) can be written as 𝑚 = 𝑓1𝑟𝑠0 𝑓2 with

𝑓𝑘 ∈ 𝐿𝑘 ∈ Rat(𝐻 ) for 𝑘 = 1, 2. We can write 𝑓1𝑟𝑠0 = 𝑟

(
𝑎 0

𝑏 0

)
and

𝑠0 𝑓2 =
(
𝑐 𝑑
0 0

)
where the 𝑎, 𝑏, 𝑐, 𝑑 depend on the pair (𝑓1, 𝑓2). Hence,

𝑚 = 𝑟 𝑓 𝑠0ℎ = 𝑟 𝑓 𝑠0𝑠0ℎ = 𝑟

(
𝑎 0

𝑏 0

) (
𝑐 𝑑
0 0

)
= 𝑟

(
𝑎𝑐 𝑎𝑑
𝑏𝑐 𝑏𝑑

)
. Remember

that 0 ≠ 𝑟 ∈ Z. We make the final tests. We have 𝑔 ∈ 𝑅 if and

only if 𝑟 , 𝐿1, and 𝐿2 allow to have the four values 𝑟𝑎𝑐, 𝑟𝑎𝑑, 𝑟𝑏𝑐, 𝑟𝑏𝑑

to be the corresponding 𝑔𝑖 𝑗 . To see this we start with eight tests

“0 ∈ 𝑀𝑖 𝑗 (0) ∩ 𝐿𝑘 = ∅?”. Now, it is enough to consider entries 𝑔𝑖 𝑗
where 𝑔𝑖 𝑗 ≠ 0. But then each 𝑔𝑖 𝑗/𝑟 has finitely many divisors 𝑒 ∈ Z,
only. Thus, a few tests “𝑀𝑖 𝑗 (𝑒)∩𝐿𝑘 = ∅?” suffice to decide𝑔 ∈ 𝑅. □

Theorem 5.3. Let 𝑃 ′ be the submonoid of M(2,Q) which is gen-
erated by GL(2,Z), all central matrices

(
𝑟 0

0 𝑟

)
with 𝑟 ∈ Q, and all

matrices ℎ ∈ M(2,Z) with det(ℎ) = 0. If 𝑅 ⊆ M(2,Q) is flat rational
over 𝑃 ′, then we can decide

(
0 0

0 0

)
∈ 𝑅.

Note that 𝑃 ′ = 𝑃 ·
{(

𝑟 0

0 𝑟

) �� 𝑟 ∈ Q} where 𝑃 is from Thm. 5.2. The

proof of Thm. 5.3 is straightforward, details are in [15].

6 GENERATORS OF SL(2,Z[1/𝑝])
As usual, Z[1/𝑝] denotes the ring {𝑝𝑛𝑟 ∈ Q | 𝑛, 𝑟 ∈ Z}. We give a

simple proof for thewell-known fact that SL(2,Z[1/𝑝]) is generated
by

(
0 −1
1 0

)
,

(
1 1

0 1

)
, and

(
𝑝 0

0 𝑝−1

)
. We use the following notation: let

𝛼, 𝛽,𝛾, 𝛿 denote elements in Z[1/𝑝], and 𝑎, 𝑏, 𝑐, 𝑑 denote elements

in Z. Starting with a matrix

(
𝛼 𝛽

𝛾 𝛿

)
we do the following:

(1) Multiply by

(
𝑝−1

0

0 𝑝

)
on the left until we reach

(
𝛼 𝛽

𝑐 𝑑

)
.

(2) Multiply by

(
0 −1
1 0

)
,

(
1 ±1
0 1

)
, and

(
1 0

±1 1

)
until we reach

(
𝛼 𝛽

0 𝑑

)
.

This is trivial for |𝑐 | = |𝑑 |. In the other case we may as-

sume |𝑐 | > |𝑑 |. Next, transform
(
𝛼 𝛽

𝑐 𝑑

)
into a matrix of type(

𝛼 𝛽

𝑐±𝑑 𝑑

)
such that |𝑐 ± 𝑑 | < |𝑐 |. Use induction on |𝑐 | + |𝑑 |.

(3) Multiply by

(
𝑝 0

0 𝑝−1

)
on the left until we reach

(
𝛼 𝑏
0 𝛿

)
.

(4) Now, 𝛼𝛿 = 1. Hence 𝛼 = 𝑝𝑚𝑎 and 𝛿 = 𝑝𝑛𝑑 where gcd(𝑎, 𝑝) =
gcd(𝑑, 𝑝) = 1. Since 𝑝 is a prime,𝑚 + 𝑛 = 0 and 𝑎𝑑 = 1.

(5) WLOG 𝑎 = 𝑑 = 1 and𝑚 ≥ 1 and hence,

(
𝛼 𝑏
0 𝛿

)
=

(
𝑝𝑚 𝑏

0 𝑝−𝑚

)
.

(6) Using

(
1 ±1
0 1

)
we can add or subtract the lower row 𝑝𝑚 |𝑏 |

times to the upper row. Since𝑚 ≥ 1 we obtain

(
𝑝 0

0 𝑝−1

)𝑚
.
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