Спектры степеней определимых отношений на булевых алгебрах *

П.М. Семухин

УДК 510.5+512.563

Аннотация

В данной статье изучаются вопросы, связанные со строением спектра множества атомов и идеала безатомных элементов в вычислимой булевой алгебре. Доказано, что если спектр множества атомов содержит 1-низкую степень, то он содержит вычислимую степень. Также показано, что в вычислимой булевой алгебре характеристики (1,1,0) с вычислимым множеством атомов спектр безатомного идеала состоит из всех Π_2^0 степеней.

§1. Введение. Изучение строения тьюринговых спектров отношений на вычислимых моделях занимает одно из центральных мест в теории конструктивных алгебраических систем. Это исследование началось с работы К. Эша и А. Нероуда [6], в которой они дали синтаксическое описание наследственно вычислимых и наследственно вычислимо перечислимых отношений.

Исследование спектров отношений оказалось не только полезным методом в изучении различных вычислимых представлений данной модели, но и превратилось в самостоятельное и весьма плодотворное направление, связанное с различными областями теории вычислимости и математической логики.

Следуя диссертации В. Харизановой [8], будем называть спектром степеней (или просто спектром) отношения R на вычислимой модели A следующее множество $\mathrm{Spec}(R) = \{ \deg(R') \mid \text{ существует вычислимая модель } A' \cong A$, в которой R' является образом $R \}$, где $\deg(R')$ — степень Тьюринга множества R'.

Особый интерес представляет изучение спектров отношений на линейных порядках и булевых алгебрах, так как они являются достаточно нетривиальным, но, с другой стороны, хорошо изученным классом моделей.

Недавно С.С. Гончаров, Р. Доуни и Д. Хиршфельд полностью решили вопрос о мощности спектров вычислимых отношений на булевых алгебрах.

Предложение 1 (С.С. Гончаров, Р. Доуни, Д. Хиршфельд [3]). Пусть R — вычислимое отношение на вычислимой булевой алгебре B. Тогда R либо определяется бескванторной формулой с константами из B (в этом случае R наследственно вычислимо), либо $\operatorname{Spec}(R)$ бесконечен.

^{*}Работа автора поддержена грантами РФФИ "Инварианты в моделях и их алгоритмические свойства" (код 02-01-00593), "Ведущие научные школы" (код НШ-2112.2003.1) и "Университеты России" (код УР.04.01.013).

Аналогичный результат имеет место для линейных порядков.

Предложение 2 (Д. Хиршфельд). Пусть R — вычислимое отношение на вычислимом линейном порядке L. Тогда R либо наследственно вычислимо, либо $\operatorname{Spec}(R)$ бесконечен.

Важную роль играет изучение спектров формульно опредилимых отношений, таких как множество соседних элементов в линейных порядках или множества атомов, безатомных элементов и т.д. в булевых алгебрах. Дж. Реммел [10] доказал, что спектр множества атомов в вычислимой булевой алгебре замкнут вверх, а Р. Доуни [7] доказал, что этот спектр всегда содержит неполную степень.

Данная работа посвящена дальнейшему изучению строения спектра множества атомов, а также идеала безатомных элементов в вычислимой булевой алгебре. Определение основных понятий, относящихся к теории вычислимости, теории конструктивных моделей и теории булевых алгебр можно найти в книгах X. Роджерса [5], Р. Соара [11], С.С. Гончарова, Ю.Л. Ершова [4] и С.С. Гончарова [2] соответственно.

Множество $A\leqslant_T\varnothing'$ называется 1-низким, если $A'\equiv_T\varnothing'$, где A' — тьюрингов скачок множество A.

Квантор ∀# означает "для всех, за исключением конечного числа".

При работе с бинарными деревьями будем использовать обозначения из книги С.С. Гончарова [2].

Пусть B — булева алгебра и $x \in B$, тогда $At_B(x)$ обозначает число атомов B, лежащих под x. Идеал, порожденный идеалом Фреше и безатомным идеалом, будем обозначать S(A).

При доказательстве того, что две булевы алгебры изоморфны, мы будем пользоваться критерием Воота, который можно найти в [2].

В $\S2$ мы докажем, что для булевых алгебр определенного вида спектр идеала безатомных элементов является полным, т.е. содержит все Π_2^0 степени. В $\S3$ будет доказано, что если спектр множества атомов содержит 1-низкую степень, то он содержит вычислимую степень. В частности, отсюда следует, что не существует вычислимой булевой алгебры, у которой спектр множества атомов содержит все вычислимо перечислимые степени, кроме вычислимой.

§2. Спектр идеала безатомных элементов. Основной результат этой части содержится в следующей теореме.

Теорема 1. Пусть B- вычислимая булева алгебра элементарной характеристики (1,1,0) такая, что множество атомов B- вычислимо. Тогда для любого Π_2^0 -множества C существует вычислимая булева алгебра $B'\cong B$ такая, что $Al(B')\equiv_T C$.

Доказательство. В работе В.Н. Власова и С.С. Гончарова [1] доказывается, что вычислимая булева алгебра элементарной характеристики (1,1,0) с вычислимым множеством атомов имеет разрешимое представление. Поэтому будем считать, что булева алгебра B разрешима. Будем использовать следующее определение.

Определение. Пусть $\{B_i\}_{i\in\omega}$ последовательность булевых алгебр такая, что:

1) множество $\{(i,x) \mid x \in B_i\}$ — вычислимо перечислимо,

- 2) функции $f_0(i, x, y) = x \vee_i y$, $f_1(i, x, y) = x \wedge_i y$, $f_2(i, x) = C_i(x)$ частично вычислимы, где \vee_i , \wedge_i , C_i операции, заданные на булевой алгебре B_i ,
- 3) функции $g_0(i) = \mathbf{0}^{B_i}$ и $g_1(i) = \mathbf{1}^{B_i}$ вычислимы.

Назовем такую последовательность вычислимой.

Рассмотрим множество $A = \{\langle x_0, \dots, x_k \rangle \mid x_i \in B_i, \ x_k = \mathbf{0}^{B_k}$ или $x_k = \mathbf{1}^{B_k}$, и $x_k \neq x_{k-1}\}$. Каждому кортежу $\langle x_0, \dots, x_k \rangle \in A$ сопоставим взаимно однозначным образом следующий элемент $x \in \sum_{i \in \omega} \{\mathbf{0}, \mathbf{1}\}$ B_i :

$$x(i) = egin{cases} x_i, & \text{если } i \leqslant k, \\ \mathbf{0}^{B_i}, & \text{если } i > k \text{ и } x_k = \mathbf{0}^{B_k}, \\ \mathbf{1}^{B_i}, & \text{если } i > k \text{ и } x_k = \mathbf{1}^{B_k}. \end{cases}$$

Ясно, что множество A — вычислимо перечислимо. Тогда существует разнозначная вычислимая функция f такая, что $\rho f = A$. С помощью функции f определим вычислимые функции \vee , \wedge и C так, чтобы $B = \langle \mathbb{N}, \vee, \wedge, C \rangle$ была вычислимой булевой алгеброй, изоморфной $\sum_{\{0,1\}} B_i$. Такую буле-

ву алгебру B назовем ecmecmbehhым вычислимым представлением прямой суммы $\sum_{i\in\omega}\{{f 0},{f 1}\}$ $B_i.$

Докажем одну вспомогательную лемму.

Лемма 1. Пусть А и В счетные булевы алгебры такие, что:

- а) множество атомов в А и В бесконечно,
- b) A и В не содержат бесконечных атомных элементов,
- c) для любого $x \in A \ (x \in B)$ либо $x \in S(A) \ (x \in S(B))$, либо $C(x) \in S(A) \ (C(x) \in S(B))$.

 $Tor \partial a \ A \cong B \cong B_{\omega+n}.$

Доказательство. Пусть

$$S = \{(x,y) \mid x \in A, \ y \in B, \ x \in S(A) \iff y \in S(B),$$

$$x \in Fr(A) \iff y \in Fr(B) \text{ if } x \in S(A) \implies At_A(x) = At_B(y)\}.$$

Нетрудно проверить, что S является условием изоморфизма алгебр A и B. Следовательно, по критерию Воота A изоморфна B. Очевидно, что алгебра $B_{\omega+\eta}$ удовлетворяет условиям а), b) и c) леммы 1. Таким образом, A и B изоморфны $B_{\omega+\eta}$.

Лемма 2. Пусть B — разрешимая булева алгебра элементарной характеристики (1,1,0). Тогда существует вычислимая последовательность $\{B_i\}_{i\in\omega}$ вычислимых булевых алгебр такая, что $B\cong\sum_{\{\mathbf{0},\mathbf{1}\}}B_i$, $\mathrm{ch}_1(B_i)=$

 $0,\ u$ множества атомов u безатомных элементов B_i равномерно вычислимы $no\ i.$

Доказательство. Так как B разрешима, то идеал Ершова-Тарского I(B) вычислим. Пусть $\{a_i\}_{i\in\omega}$ — вычислимая последовательность, перечисляющая все элементы B. Построим вычислимую последовательность $\{b_i\}_{i\in\omega}$ следующим образом: положим $b_0=a_t$, где t — наименьшее число такое, что $a_t\in I(B)$ и $a_t\neq \mathbf{0}$; пусть b_0,\ldots,b_n уже построены, положим $b_{n+1}=a_t\bigvee_{i\leqslant n}b_i$, где t — наименьшее число такое, что $a_t\in I(B)$ и

 $a_t \setminus \bigvee_{i \leqslant n} b_i \neq \mathbf{0}$. Положим $B_i = \widehat{b_i}$. Тогда последовательность $\{B_i\}_{i \in \omega}$ является искомой.

Рассмотрим последовательность $\{B_i\}_{i\in\omega}$, существование которой утверждается в лемме 2. Так как $\mathrm{ch}_1(B_i)=0$, то $B_i\cong A_i'\times B_i'$, где A_i' — атомная булева алгебра, B_i' — безатомная булева алгебра или $\mathbf{0}$.

Заметим, что если $\exists^{\infty}i\ B_i'\cong \mathbf{0}$, то $\exists^{\infty}i\ B_i'\cong B_{\eta}$, так как в противном случае $\mathrm{ch}_1(B)=0$. Положим $B_i^1=B_i\times B_{\eta}$. Ясно, что $B\cong \sum_{i\in \sigma}\{\mathbf{0},\mathbf{1}\}B_i^1$.

Поэтому в дальнейшем будем считать, что $B_i \cong A_i' \times B_i'$, где $B_i' \cong B_\eta$ для всех i. Рассмотрим следующие случаи.

Случай 1. $\exists^{\infty}i \ A'_i$ бесконечна.

Случай 1.1. Существует бесконечно много i таких, что в A_i' существует прямое слагаемое типа B_ω . Положим $B_i^1=B_i\times A^*$, где A^* — разрешимое представление B_ω . Как нетрудно видеть $B\cong\sum_{i\in\omega}\{\mathbf{0},\mathbf{1}\}$ B_i^1 , значит, в данном

случае можно считать, что A'_i бесконечна для всех i.

Случай 1.2. Среди i таких, что A_i' бесконечна содержится лишь конечное число i таких, что в A_i' имеется прямое слагаемое типа B_ω . В этом случае $\exists^\infty i \ A_i' \cong B_{\omega \times \eta}$. Аналогично случаю 1.1. положим $B_i^1 = B_i \times A^*$, где A^* — разрешимое представление $B_{\omega \times \eta}$. Как нетрудно видеть $B \cong \sum_{i \in \omega} \{\mathbf{0}, \mathbf{1}\} B_i^1$,

значит, в данном случае можно считать, что A'_i бесконечна для всех i.

Случай 2. $\exists^{<\infty}i$ A_i' бесконечна. Выделим все A_i' такие, что A_i' бесконечна, в отдельное слагаемое. Оставшаяся часть будет по лемме 1 изоморфна $B_{\omega+\eta}$, т.е. B изоморфна прямому произведению $B_{\omega+\eta}$ и вычислимой бесконечной атомной булевой алгебры. Теперь доказательство теоремы 1 будет следовать из лемм 3 и 4, приводимых ниже.

Лемма 3. Пусть C- произвольное Π^0_2 -множество. Тогда существует вычислимая булева алгебра $B\cong B_{\omega+\eta}$ такая, что $Al(B)\equiv_T C$.

Доказательство. Если C вычислимое множество, то в качестве B нужно взять разрешимое представление $B_{\omega+\eta}$. Далее будем считать, что C невычислимо. Так как $C-\Pi^0_2$ -множество, то существует вычислимый предикат R(x,s) такой, что

$$x \in C \iff \exists^{\infty} s \ R(x, s).$$

Пусть D — вычислимая безатомная булева алгебра и пусть $\{D_i\}_{i\in\omega}$ — сильно вычислимая последовательность конечных подалгебр D такая, что $D_0 = \{\mathbf{0},\mathbf{1}\},\, D_{i+1} = \operatorname{gr}(D_i \cup \{a_i\}),\,$ где a_i — атом D_{i+1} и $D = \bigcup_{i\in\omega} D_i.$

Рассмотрим вычислимую последовательность булевых алгебр $\{B_i\}_{i\in\omega}$ такую, что для любого k $B_{2k}=D_0$ и $B_{2k+1}=D$. По шагам будем строить вычислимую последовательность $\{B'_i\}_{i \in \omega}$.

Шаг 0. Для всех k положим $B_{2k}^0 = B_{2k}$, $B'_{2k+1} = B_{2k+1}$.

Шаг s+1. Для всех $k \leqslant s+1$ таких, что R(k,s+1) производим следующие построения: если $B^s_{2k}=D_i$, то положим $B^{s+1}_{2k}=D_{i+1}$. Для всех остальных k положим $B^{s+1}_{2k}=B^s_{2k}$. На этом шаг s+1 завершен. Положим $B'_{2k}=\bigcup_{s\in\omega}B^s_{2k}$. Таким образом последовательность $\{B'_i\}_{i\in\omega}$ по-

строена. Пусть B естественное вычислимое представление $\sum_{\{\mathbf{0},\mathbf{1}\}} B_i'$. Имеем следующую эквивалентность

$$k \in C \iff x^k$$
 — безатомный элемент $\sum_{i \in \omega} \{\mathbf{0}, \mathbf{1}\} B_i',$

где

$$x^k(i) = egin{cases} \mathbf{0}^{B_i'}, & ext{если } i \neq 2k, \\ \mathbf{1}^{B_i'}, & ext{если } i = 2k. \end{cases}$$

Значит, $C\leqslant_T Al(B)$. Далее, x — безатомный элемент $\sum_{\{\mathbf{0},\mathbf{1}\}} B_i'$ тогда и

только тогда, когда существует i_0 такое, что для всех $i>i_0$ $x(i)=\mathbf{0}^{B_i'}$ и для всех $i \leqslant i_0$

$$i$$
 — четное $\Longrightarrow x(i) = \mathbf{0}^{B_i'}$ или $\frac{i}{2} \in C$.

Значит, $Al(B) \leqslant_T C$. Так как C — невычислимо, то $\mathbb{N} \setminus C$ — бесконечно. По лемме 1 $B \cong B_{\omega+\eta}$.

Пемма 4. Пусть $\{B_i\}_{i\in\omega}$ — вычислимая последовательность булевых алгебр таких, что $\vec{B_i}\cong \vec{A_i'}\times B_i'$, где A_i' — бесконечная атомная булева алгебра, $B_i'\cong B_\eta$, и множества атомов и безатомных элементов B_i равномерно вычислимы по i. Тогда для любого Π_2^0 -множества C существует вычислимая булева алгебра $B\cong \sum_{i\in\{0,1\}}B_i$ такая, что $Al(B)\equiv_T C.$

Доказательство. Так как множество атомов B_i равномерно вычислимо по i, то можно построить вычислимую последовательность $\{a_i\}_{i\in\omega}$ такую, что a_i — атом B_i . Пусть D — вычислимая безатомная булева алгебра и $\{D_i\}_{i\in\omega}$ — сильно вычислимая последовательность конечных подалгебр, определенная в доказательстве леммы 3. Рассмотрим вычислимую последовательность $\{C_i\}_{i\in\omega}$ такую, что $C_{2k}=D_0$ и $C_{2k+1}=(C(a_k))_{B_k}$. Очевидно, что $\sum_{i\in\omega}\{{f 0},{f 1}\} C_i\cong\sum_{i\in\omega}\{{f 0},{f 1}\} B_i$. Пусть R(x,s) — вычислимый предикат, такой что

$$x \in C \iff \exists^{\infty} s \ R(x, s).$$

По шагам построим вычислимую последовательность $\{C_i'\}_{i\in\omega}$ Шаг 0. Для всех k положим $C_{2k}^0 = C_{2k}$, $C'_{2k+1} = C_{2k+1}$.

Шаг s+1. Для всех $k\leqslant s+1$ таких, что R(k,s+1) производим следующие построения: если $C_{2k}^s=D_i$, то положим $C_{2k}^{s+1}=D_{i+1}$. Для всех остальных k положим $C_{2k}^{s+1}=C_{2k}^s$. На этом шаг s+1 завершен. Положим $C_{2k}'=\bigcup_{s\in\omega}C_{2k}^s$. Так как для любого k C_{2k}' является либо ко-

Положим $C'_{2k} = \bigcup_{s \in \omega} C^s_{2k}$. Так как для любого k C'_{2k} является либо конечной, либо безатомной булевой алгеброй, то $C'_{2k} \times C'_{2k+1} \cong B_k$. Значит, $\sum_{i \in \omega} \{0,1\} C'_i \cong \sum_{i \in \omega} \{0,1\} B_i$. Пусть B — естественное вычислимое представление $\sum_{i \in \omega} \{0,1\} C'_i$. Так как

$$k \in C \iff x^k$$
 — безатомный элемент $\sum_{i \in \omega} \{\mathbf{0}, \mathbf{1}\} C_i',$

где

$$x^k(i) = \begin{cases} \mathbf{0}^{C'_i}, & \text{если } i \neq 2k, \\ \mathbf{1}^{C'_i}, & \text{если } i = 2k, \end{cases}$$

то получаем, что $C \leqslant_T Al(B)$. Так как

$$x\in\sum_{i\in\omega}\{0,1\}$$
 C_i' — безатомный \iff существует i_0 такое, что $\forall i>i_0$
$$x(i)=\mathbf{0}^{C_i'}$$
 и для всех $i\leqslant i_0$
$$(i-\text{нечетное}\implies x(i)$$
 — безатомный элемент B_k и
$$x(i)\leqslant C(a_k), \text{ где } k=\frac{i-1}{2}) \ \&$$

$$(i-\text{четное}\implies x(i)=\mathbf{0}^{C_i'}$$
 или
$$\frac{i}{2}\in C).$$

Значит, $Al(B) \leqslant_T C$.

Таким образом, теорема 1 доказана.

§3. Спектр множества атомов. Теперь докажем несколько теорем о свойствах спектра множества атомов в вычислимой булевой алгебре. Прежде всего докажем следующую теорему об изоморфизме.

Теорема 2 (Об изоморфизме). Пусть A-noдалгебра булевой алгебры B такая, что:

- 1) множество Atom(A), атомов алгебры A, бесконечно,
- 2) $ecnu\ a \in Atom(A), \ mo\ a \in Fr(B),$
- 3) $ecnu\ a \in Al(A), mo\ a \in S(B),$
- 4) $B = gr(A \cup Atom(B))$.

Tогда A изоморфна B.

Доказательство. Пусть $x,y \in B$, будем писать $x \sim y$, если $x \triangle y \in Fr(B)$. Так как $B = \operatorname{gr}(A \cup Atom(B))$, то $\forall b \in B \ \exists a \in A \ a \sim b$. Легко заметить, что $\forall a \in A \ a \in S(A) \iff a \in S(B)$. Положим

$$S = \{(a,b) \in A \times B \mid a \in Fr(A) \iff b \in Fr(B), \ a \in S(A) \iff b \in S(B), \ a \in S(A) \Longrightarrow At_A(a) = At_B(b), \ a \notin S(A) \Longrightarrow a \sim b\}.$$

Рутинная проверка показывает, что S является условием изоморфизма булевых алгебр A и B. Таким образом, по критерию Воота A и B изоморфны. Теорема доказана.

Теорема 3. Пусть B- вычислимая булева алгебра, содержащая бесконечно много атомов, и $Fr(B), Al(B) \in \Delta^0_2$. Тогда существует вычислимая булева алгебра $A \cong B$ такая, что Fr(A)- вычислимо перечислим.

Доказательство. Так как B — вычислимая булева алгебра, то существует вычислимо перечислимое дерево D и частично вычислимая функция φ такая, что $\langle D, \varphi \rangle$ — дерево, порождающее B. Также существует сильно вычислимая последовательность $\{D_s\}_{s \in \omega}$ конечных поддеревьев D такая, что $D = \bigcup_{s \in \omega} D_s$ и $D_{s+1} = D_s \cup \{L(a), R(a)\}$, где a — концевая вершина D_s .

Назовем вершину $x\in D$ конечной, если $\widehat{x}\cap D$ — конечно, где $\widehat{x}=\{y\mid y\preccurlyeq x\}$. Вершину $x\in D$ назовем полной, если $\widehat{x}\subseteq D$. Очевидно, что

$$x$$
 — конечная вершина $D \Longleftrightarrow \varphi(x) \in Fr(B),$ x — полная вершина $D \Longleftrightarrow \varphi(x) \in Al(B).$

Значит множества конечных и полных вершин являются Δ^0_2 -множествами. Тогда существуют сильно вычислимые последовательности $\{F_s\}_{s\in\omega}$ и $\{G_s\}_{s\in\omega}$ конечных множеств, такие что

$$x$$
 — конечная вершина $D\Longrightarrow \forall^\# s\ x\in F_s,$ x — не конечная вершина $D\Longrightarrow \forall^\# s\ x\notin F_s,$ x — полная вершина $D\Longrightarrow \forall^\# s\ x\in G_s,$ x — не полная вершина $D\Longrightarrow \forall^\# s\ x\notin G_s.$

Построим новую сильно вычислимую последовательность $\{F_s'\}_{s\in\omega}$ конечных множеств, такую что

- 1) $F'_s \subseteq D_s$,
- 2) x конечная вершина $D \Longrightarrow \forall^{\#} s \ x \in F'_s$,
- 3) x не конечная вершина $D \Longrightarrow \forall^{\#} s \ x \notin F'_s$,
- 4) F_s' нижний конус в D_s , т. е. для любых $x,y\in D_s$ из того, что $y\preccurlyeq x$ и $x\in F_s'$ следует, что $y\in F_s'$,
- 5) $0 \notin F'_{\circ}$,
- 6) если $x \in D_s \setminus F_s'$, то существует $y \preccurlyeq x$ концевая вершина D_s такая, что $y \notin F_s'$,

7) если x — полная вершина D, то $\forall^{\#}s \ \widehat{x} \cap F'_s = \varnothing$.

Смысл этих условий состоит в том, что последовательность $\{F_s'\}_{s\in\omega}$ обладает теми же основными свойствами, что и $\{F\cap D_s\}_{s\in\omega}$, где F — это множество всех конечных вершин в D.

Положим $F_0' = F_{s_0} \cap D_0$, где s_0 — это первый шаг, такой что

- а) $F_{s_0} \cap D_0$ нижний конус в D_0 ,
- b) $0 \notin F_{s_0} \cap D_0$,
- с) если $x \in D_0 \setminus F_{s_0}$, то существует $y \preccurlyeq x$ концевая вершина D_0 такая, что $y \notin F_{s_0}$,
- d) если $x \in G_{s_0}$, то $\widehat{x} \cap F_{s_0} \cap D_0 = \emptyset$.

Такое s_0 всегда существует. Далее, положим $F_1' = F_{s_1} \cap D_1$, где s_1 — это первый шаг после s_0 , такой что выполнены условия a), b), c) и d) с заменой F_{s_0} , G_{s_0} и D_0 на F_{s_1} , G_{s_1} и D_1 соответственно. И так далее.

Как нетрудно проверить, $\{F'_s\}_{s\in\omega}$ обладает свойствами 1) – 7). Для удобства обозначений вместо F'_s будем в дальнейшем писать просто F_s .

Построение нужной булевой алгебры A будет осуществляться по шагам. К концу шага s будут построены конечная булева алгебра A_s , поддерево $\widetilde{D}_s \subseteq D_s$, отображение $f_s: \widetilde{D}_s \longrightarrow A_s$ такое, что $\langle \widetilde{D}_s, f_s \rangle$ дерево порождающее булеву алгебру $\widetilde{A}_s = \operatorname{gr}(\{f_s(x) \mid x \in \widetilde{D}_s\})$, а также множества Fr_s , Fr_s^- .

Считаем, что носитель A_s является начальным сегментом \mathbb{N} . Если в описании конструкции встречается выражение "делим атом $a \in A_s$ на два атома a_0 и a_1 в A_{s+1} ", то это означает, что мы строим булеву алгебру A_{s+1} такую, что носитель A_{s+1} является начальным сегментом \mathbb{N} , $A_{s+1} = \operatorname{gr}(A_s \cup \{a_0\})$, $a_0 \notin A_s$ и $a_0 \leqslant a$. Тогда $a_1 = a \backslash a_0$. Ясно, что по заданной A_s и атому $a \in A_s$ это построение можно осуществить эффективно.

Положим $f = \lim_s f_s$ и $A = gr(\{f(x) \mid x \in D\})$. Для каждого m > 0 заведем следующие требования:

$$R_m^0: m$$
 — не конечная вершина $D\Longrightarrow m\in \mathrm{dom}(f)$ и $f(m)\notin Fr(A),$ $R_m^1: m$ — конечная вершина $D\Longrightarrow m\in \mathrm{dom}(f)$ и $f(m)\in Fr(A).$

Зададим приоритет на требованиях следующим образом: если n < m и $m \neq S(n)$, то $R_n^i > R_m^j$ для всех $i,j \in \{0,1\}$, если n < m и m = S(n), то $R_n^0 > R_{S(n)}^0 > R_n^1 > R_{S(n)}^1$.

Описание конструкции.

Шаг 0. Полагаем $A_0=\{0,1\}$, причем 1 — наибольший, а 0 — наименьший элемент $A_0,\,\widetilde{D}_0=\{0\},\,f_0(0)=1,\,Fr_0=\varnothing,\,Fr_0^-=\varnothing.$ Шаг s+1. Будем говорить, что

(i) Требование R_m^0 привлекает внимание на шаге s+1, если $m \in D_{s+1}$, $m \notin \widetilde{D}_s$, $H(m) \in \widetilde{D}_s$, $m \notin F_{s+1}$ или $m \in \widetilde{D}_s$, $m \notin F_{s+1}$, $f_s(m) \in Fr_s$ и существует $k \preccurlyeq S(m)$ — концевая вершина \widetilde{D}_s такая, что $f_s(k) \notin Fr_s$.

(ii) Требование R_m^1 привлекает внимание на шаге s+1, если $m \in D_{s+1}$, $m \notin \widetilde{D}_s, H(m) \in \widetilde{D}_s, m \in F_{s+1}$ или $m \in \widetilde{D}_s, m \in F_{s+1}, f_s(m) \notin Fr_s$.

Пусть R — требование с наивысшим приоритетом, которое привлекает внимание на шаге s+1. Говорим, что это требование действует на шаге s+1. В зависимости от вида требования R будем производить следующие построения:

- (1) Пусть $R=R_m^0$ и $m\in D_{s+1},\, m\notin \widetilde{D}_s,\, H(m)\in \widetilde{D}_s,\, m\notin F_{s+1}.$ Рассмотрим $f_s(H(m)).$ Если это атом A_s , то делим его на два атома a_0 и a_1 в $A_{s+1},$ если $f_s(H(m))=a\vee b,$ где a атом A_s и $b\in Fr_s^-$, то делим a на два атома a_0 и a_1 в $A_{s+1}.$ Полагаем $\widetilde{D}_{s+1}=\widetilde{D}_s\cup\{m,S(m)\},\, f_{s+1}\upharpoonright\widetilde{D}_s=f_s,\, f_{s+1}(m)=a_0,\, f_{s+1}(S(m))=f_s(H(m))\backslash a_0,\, Fr_{s+1}=Fr_s,\, Fr_{s+1}^-=Fr_s^-.$
- (2) Пусть $R = R_m^0$ и $m \in \widetilde{D}_s$, $m \notin F_{s+1}$, $f_s(m) \in Fr_s$ и существует $k \preccurlyeq S(m)$ концевая вершина \widetilde{D}_s такая, что $f_s(k) \notin Fr_s$. Если $f_s(k)$ атом A_s , то делим его на два атома a_0 и a_1 в A_{s+1} , если $f_s(k) = a \lor b$, где a атом A_s и $b \in Fr_s^-$, то делим a на два атома a_0 и a_1 в A_{s+1} . Полагаем $\widetilde{D}_{s+1} = \widetilde{D}_s \setminus \{k \mid k \prec m\}$,

$$f_{s+1}(n)=egin{cases} f_s(n),& \text{если } H(m) \preccurlyeq n \text{ или } n \text{ несравнимо c } k \text{ и } m \ f_s(n)\lor a_0,& \text{если } n=m \ f_s(n) \diagdown a_0,& \text{если } k \preccurlyeq n \preccurlyeq S(m), \end{cases}$$

$$Fr_{s+1}^- = Fr_s^- \setminus \{b \in Fr_s^- \mid b \leqslant f_s(m)\} \cup \{f_s(m)\}, Fr_{s+1} = Fr_s.$$

- (3) Пусть $R = R_m^1$ и $m \in D_{s+1}$, $m \notin \widetilde{D}_s$, $H(m) \in \widetilde{D}_s$, $m \in F_{s+1}$. Рассмотрим $f_s(H(m))$. Если это атом A_s , то делим его на два атома a_0 и a_1 в A_{s+1} , если $f_s(H(m)) = a \lor b$, где a атом A_s и $b \in Fr_s^-$, то делим a на два атома a_0 и a_1 в A_{s+1} . Полагаем $\widetilde{D}_{s+1} = \widetilde{D}_s \cup \{m, S(m)\}$, $f_{s+1} \upharpoonright \widetilde{D}_s = f_s$, $f_{s+1}(m) = a_0$, $f_{s+1}(S(m)) = f_s(H(m)) \backslash a_0$, $Fr_{s+1} = \{x \in A_{s+1} \mid \exists y \in Fr_s \mid x \leqslant y\} \cup \{f_{s+1}(m)\}$, $Fr_{s+1}^- = Fr_s^-$.
- (4) Пусть $R=R_m^1$ и $m\in \widetilde{D}_s,\ m\in F_{s+1},\ f_s(m)\notin Fr_s.$ Полагаем $Fr_{s+1}=Fr_s\cup\{x\in A_s\mid x\leqslant f_s(m)\},\ A_{s+1}=A_s,\ \widetilde{D}_{s+1}=\widetilde{D}_s,\ f_{s+1}=f_s,\ Fr_{s+1}^-=Fr_s^-.$

На этом шаг s+1 завершен. Теперь доказательство теоремы будет следовать из лемм, приведенных ниже.

Лемма 5. Для любого s выполнены следующие условия:

- 1) Если k концевая вершина \widetilde{D}_s , то $f_s(k)=a\vee b$, где a атом A_s , $a\notin Fr_s^-$ и $(b\in Fr_s^-$ или b=0),
- 2) Fr_s нижний конус в A_s ,
- 3) $\forall n \in \widetilde{D}_s \setminus \{0\} \ (f_s(n) \in Fr_s \ \& \ f_s(S(n)) \in Fr_s) \Longrightarrow f_s(H(n)) \in Fr_s,$
- 4) $f_s(0) = 1 \notin Fr_s$,
- 5) Если k концевая вершина \widetilde{D}_s и все атомы A_s , лежащие под $f_s(k)$ принадлежат Fr_s , то $f_s(k) \in Fr_s$,

6) $Fr_s^- \subseteq Fr_s$.

Доказательство. Доказательство будем вести индукцией по s. Пусть на шаге s все эти условия выполнены. Рассмотрим шаг s+1. Пусть на этом шаге действует требование R. Рассмотрим следующие случаи:

- (1) $R=R_m^0$ и $m\in D_{s+1}, \ m\notin \widetilde{D}_s, \ H(m)\in \widetilde{D}_s, \ m\notin F_{s+1}.$ Так как $m\notin F_{s+1},$ то $H(m)\notin F_{s+1}.$ По условию $H(m)\in \widetilde{D}_s.$ Покажем, что $f_s(H(m))\notin Fr_s.$ Пусть $f_s(H(m))\in Fr_s.$ Если существует $k\preccurlyeq S(H(m))$ концевая вершина \widetilde{D}_s такая, что $f_s(k)\notin Fr_s.$ то требование $R_{H(m)}^0$ привлекало бы внимание, что невозможно. Значит, для всех концевых вершин $k\in \widetilde{D}_s$ таких, что $k\preccurlyeq S(H(m))$ выполнено $f_s(k)\in Fr_s.$ По индукционному предположению получаем, что $f_s(H(H(m)))\in Fr_s.$ По индукционному проводя это рассуждение еще несколько раз получаем, что $f_s(0)\in Fr_s$ противоречие. Таким образом $f_s(H(m))\notin Fr_s.$ Теперь выполнение всех условий очевидно.
- (2) $R=R_m^0$ и $m\in \widetilde{D}_s,\ m\notin F_{s+1},\ f_s(m)\in Fr_s$ и существует $k\preccurlyeq S(m)$ концевая вершина \widetilde{D}_s такая, что $f_s(k)\notin Fr_s$. Проверим условие 3). Пусть $k\preccurlyeq S(m)$ концевая вершина \widetilde{D}_s такая, что $f_s(k)\notin Fr_s$. Тогда $f_s(k)=a_0\vee a_1\vee b$, где $a_0,\ a_1$ атомы $A_{s+1},\ a_0\vee a_1$ атом $A_s,\ b\in Fr_s^-$ или b=0. Пусть $n\in \widetilde{D}_{s+1}\setminus\{0\}$ и $f_{s+1}(n)\in Fr_{s+1}$ & $f_{s+1}(S(n))\in Fr_{s+1}$. Тогда ясно, что $f_s(n)\in Fr_s$ и $f_s(S(n))\in Fr_s$. По индукционному предположению $f_s(H(n))\in Fr_s$. Пусть $f_{s+1}(H(n))\notin Fr_{s+1}$. Это возможно лишь в том случае, если $f_{s+1}(H(n))=f_s(H(n))\vee a_0$ либо $f_{s+1}(H(n))=f_s(H(n))\setminus a_0$. Если выполнен первый случай, то H(n)=m, что невозможно, так как m концевая вершина \widetilde{D}_{s+1} . Если выполнен второй случай, то $k\preccurlyeq H(n)$. Тогда $f_s(k)\leqslant f_s(H(n))\in Fr_s$. Отсюда, $f_s(k)\in Fr_s$ противоречие. Таким образом, $f_{s+1}(H(n))\in Fr_{s+1}$.

Проверка остальных условий достаточно очевидна.

(3) $R = R_m^1$ и $m \in D_{s+1}, m \notin \widetilde{D}_s, H(m) \in \widetilde{D}_s, m \in F_{s+1}$. Проверим условие 3), т.е. что

$$\forall n \in \widetilde{D}_{s+1} \setminus \{0\} \ (f_{s+1}(n) \in Fr_{s+1} \ \& \ f_{s+1}(S(n)) \in Fr_{s+1} \\ \Longrightarrow f_{s+1}(H(n)) \in Fr_{s+1}).$$

Заметим, что $\forall n \in \widetilde{D}_s$ $f_s(n) \in Fr_s \iff f_{s+1}(n) \in Fr_{s+1}$. Поэтому для $n \in \widetilde{D}_s \setminus \{0\}$ условие 3) выполнено. Пусть n = m. По построению $f_{s+1}(m) \in Fr_{s+1}$. Если $f_{s+1}(S(m)) = f_s(H(m)) \setminus a_0 \in Fr_{s+1}$, то существует $y \in Fr_s$ такой, что $f_s(H(m)) \setminus a_0 \leqslant y$. Тогда $f_s(H(m)) \leqslant y$ и, следовательно, $f_s(H(m)) \in Fr_s$. Значит, $f_{s+1}(H(m)) \in Fr_{s+1}$.

Проверим условие 5). Рассмотрим случай, когда k=S(m), так как проверка остальных случаев тривиальна. Пусть $f_{s+1}(H(m))=a_0\vee a_1\vee b$, $f_{s+1}(m)=a_0,\,f_{s+1}(S(m))=a_1\vee b$, где $a_0,\,a_1-$ атомы $A_{s+1},\,a_0\vee a_1-$ атом $A_s,\,b\in Fr_s^-$ или b=0. Предположим, что все атомы A_{s+1} , лежащие под $f_{s+1}(S(m))$, принадлежат Fr_{s+1} . Тогда $a_1\in Fr_{s+1}$. Значит, существует $y\in Fr_s$ такой, что $a_1\leqslant y$. Тогда $a=a_0\vee a_1\leqslant y$, следовательно, $a\in Fr_s$. Кроме того все атомы A_{s+1} , лежащие под b, являются атомами A_s и

принадлежат Fr_s . По индукционному предположению $f_{s+1}(H(m)) \in Fr_s$, значит, $f_{s+1}(S(m)) \in Fr_{s+1}$.

Проверка остальных условий очевидна.

(4) $R = R_m^1$ и $m \in D_s$, $m \in F_{s+1}$, $f_s(m) \notin Fr_s$. Рассмотрим только условие 3), так как проверка остальных условий тривиальна. Нужно доказать, что

$$\forall n \in \widetilde{D}_{s+1} \setminus \{0\} \ (f_{s+1}(n) \in Fr_{s+1} \ \& \ f_{s+1}(S(n)) \in Fr_{s+1} \\ \Longrightarrow f_{s+1}(H(n)) \in Fr_{s+1}).$$

Рассмотрим случай, когда n=m, так как в остальных случаях доказательство очевидно. По построению $f_{s+1}(m) \in Fr_{s+1}$. Докажем, что $f_{s+1}(S(m)) \notin Fr_{s+1}$. Пусть $f_{s+1}(S(m)) \in Fr_{s+1}$, тогда $f_{s+1}(S(m)) \in Fr_s$. Покажем, что $S(m) \in F_{s+1}$. Действительно, пусть $S(m) \notin F_{s+1}$. Тогда существует $k \preccurlyeq m$ — концевая вершина \widetilde{D}_s такая, что $f_s(k) \notin Fr_s$. Если это не так, то по индукционному предположению получим, что $f_s(m) \in$ Fr_s — противоречие, так как по условию $f_s(m) \notin Fr_s$. Таким образом получили, что $S(m) \in D_s$, $S(m) \notin F_{s+1}$, $f_s(S(m)) = f_{s+1}(S(m)) \in Fr_s$ и существует $k \preccurlyeq m = S(S(m))$ — концевая вершина \widetilde{D}_s такая, что $f_s(k) \notin Fr_s$. Значит, на шаге s+1 требование $R^0_{S(m)}$ привлекает внимание, что невозможно, так как на этом шаге действует требование R_m^1 . Таким образом доказано, что $S(m) \in F_{s+1}$. По условию $m \in F_{s+1}$, значит, $H(m) \in F_{s+1}$. Тогда $f_s(H(m)) \in Fr_s$, так как если $f_s(H(m)) \notin Fr_s$, то требование $R^1_{H(m)}$ привлекает внимание на шаге s+1, что невозможно. Так как $f_s(m) \leqslant f_s(H(m))$, то $f_s(m) \in Fr_s$ — противоречие, так как по условию $f_s(m) \notin Fr_s$. Таким образом, доказали, что $f_{s+1}(S(m)) \notin$ Fr_{s+1} .

Лемма 6. Каждое требование действует лишь конечное число раз.

ДОКАЗАТЕЛЬСТВО. Рассмотрим n>0 такое, что n+1=S(n) и рассмотрим требования $R_n^0,\ R_{n+1}^0,\ R_n^1,\ R_{n+1}^1.$ Пусть \mathbf{s}_0 — шаг, после которого ни одно требование с более высоким приоритетом не действует. Тогда существует $s_1\geqslant s_0$ такое, что для всех $s\geqslant s_1$ $n,S(n)\in \widetilde{D}_s$. Далее, существует $s_2\geqslant s_1$ такое, что

$$n$$
 — конечная вершина $D\Longrightarrow \forall s\geqslant s_2\; n\in F_s,$ n — не конечная вершина $D\Longrightarrow \forall s\geqslant s_2\; n\notin F_s,$ $S(n)$ — конечная вершина $D\Longrightarrow \forall s\geqslant s_2\; S(n)\in F_s,$ $S(n)$ — не конечная вершина $D\Longrightarrow \forall s\geqslant s_2\; S(n)\notin F_s.$

Рассмотрим шаг s_2+1 . Пусть n и S(n) — не конечные вершины D, тогда $n \notin F_{s_2}$. Если $f_{s_2}(n) \in Fr_{s_2}$, то существует $k \preccurlyeq S(n)$ — концевая вершина \widetilde{D}_{s_2} такая, что $f_{s_2}(k) \notin Fr_{s_2}$, так как в противном случае $f_{s_2}(H(n)) \in Fr_{s_2}$ и $H(n) \notin F_{s_2}$. Так как требование $R^0_{H(n)}$ не привлекает внимание на шаге s_2+1 , то для любой концевой вершины $k \preccurlyeq S(H(n))$ дерева \widetilde{D}_{s_2} будем иметь

 $f_{s_2}(k) \in Fr_{s_2}$. Значит, $f_{s_2}(H(H(n)) \in Fr_{s_2}$, но $H(H(n)) \notin F_{s_2}$. Продолжая эти рассуждения получим, что $f_{s_2}(0) \in Fr_{s_2}$ — противоречие. Значит требование R_n^0 привлекает внимание на шаге s_2+1 , а тогда оно действует на этом шаге.

Таким образом $f_{s_2+1}(n) \notin Fr_{s_2+1}$. Аналогично $f_{s_2+2}(S(n)) \notin Fr_{s_2+2}$. Значит после шага s_2+2 ни одно из требований R_n^0 , R_{n+1}^0 , R_n^1 , R_{n+1}^1 не будет привлекать внимания, а, следовательно, не будет действовать.

Пусть n — не конечная, а S(n) — конечная вершины D. Как и выше получаем, что $f_{s_2+1}(n) \notin Fr_{s_2+1}$. Если $f_{s_2+1}(S(n)) \notin Fr_{s_2+1}$, то требование $R^1_{S(n)}$ будет привлекать внимание на шаге \mathbf{s}_2+2 , а, значит, будет действовать на этом шаге. Таким образом, $f_{s_2+2}(S(n)) \in Fr_{s_2+2}$. Значит, после шага \mathbf{s}_2+2 ни одно из требований R^0_n , R^0_{n+1} , R^1_n , R^1_{n+1} не будет привлекать внимания, а, следовательно, не будет действовать.

Случаи, когда n — конечная, а S(n) — не конечная вершины D и когда n и S(n) — конечные вершины D рассматриваются аналогично.

Лемма 7. Для любого $n \in D$ существует предел $f(n) = \lim_s f_s(n)$.

Доказательство. Непосредственно следует из предыдущей леммы.

Пусть $\widetilde{A}=\operatorname{gr}(f(n)\mid n\in D)$, тогда ясно, что $\langle D,f\rangle$ — дерево, порождающее булеву алгебру \widetilde{A} . Значит $B\cong\widetilde{A}$. Положим $Fr=\bigcup_{s\in\omega}Fr_s$. Докажем несколько лемм о свойствах \widetilde{A} и Fr.

Лемма 8. $Ecnu\ a-amon\ \widetilde{A},\ mo\ a\in Fr(A).$

ДОКАЗАТЕЛЬСТВО. Так как a- атом \widetilde{A} , то существует n- концевая вершина D такая, что f(n)=a. Тогда существует s_0 такой, что для всех $s\geqslant s_0$ $f_s(n)=f(n)$. Рассмотрим элемент $f_{s_0}(n)\in A_{s_0}$. Тогда $f_{s_0}(n)=a\vee b$, где a- атом $A_{s_0},\,b\in Fr_{s_0}^-$ или b=0. В любом случае $b\in Fr(A)$. Так как n- концевая вершина D и $f_s(n)=f_{s_0}(n)$ для всех $s\geqslant s_0$, то a является атомом a. Значит, $a\in Fr(A)$.

Лемма 9. Если n - nолная вершина $D, mo f(n) \in S(A)$.

Доказательство. Рассмотрим s_0 такое, что для всех $s\geqslant s_0$ $f_s(n)=f(n)$. Рассмотрим $s_1\geqslant s_0$ такое, что для всех $s\geqslant s_1$ $F_s\cap \widehat{n}=\varnothing$. Существует $s_2\geqslant s_1$ такое, что для всех $m\in \widetilde{D}_{s_2}\cap \widehat{n}$ $f_{s_2}(m)\notin Fr_{s_2}$. Тогда имеет место следующая эквивалентность: $x\leqslant f(n)$ и x- атом $A\Longleftrightarrow x\in A_{s_2}$ и существует $b\in Fr_{s_2}^-$ такое, что $x\leqslant b\leqslant f(n)$.

Отсюда видно, что f(n) содержит лишь конечное число атомов A, т.е. $f(n) \in S(A)$.

Лемма 10. Если x — безатомный элемент \widetilde{A} , то $x \in S(A)$.

Доказательство. Непосредственно следует из предыдущей леммы.

Лемма 11. $Ecnu \ x \in Fr, \ mo \ x \in Fr(A).$

Доказательство. Пусть $x \in Fr$. Рассмотрим s_0 такое, что $x \in Fr_{s_0}$. Пусть $x = x_0 \lor \cdots \lor x_k$, где x_i атом A_{s_0} , для каждого $i = 1, \ldots, k$. Тогда все $x_i \in Fr_{s_0}$. Если существует $b \in Fr_{s_0}^-$ такой, что $x_i \leqslant b$, то x_i — атом A. Если такого b нет, то существует n_i — концевая вершина \widetilde{D}_{s_0} такая, что $f_{s_0}(n_i) = x_i \lor b$, где $b \in Fr_{s_0}^-$ или b = 0. Если на каком-то шаге $s \geqslant s_0$ действует требование R_m^0 , где $n_i \preccurlyeq m$, то x_i окажется лежащим под элементом из Fr_s^- , значит, $x_i \in Fr(A)$. Если никакое требование вида R_m^0 , где $n_i \preccurlyeq m$ не действует после шага s_0 , то n_i — конечная вершина D, а тогда $x_i \in Fr(A)$. Таким образом, получаем, что $x \in Fr(A)$.

Лемма 12. $Ecnu x - amom A, mo x \in Fr.$

Доказательство. Рассмотрим s_0 такое, что x — атом A_{s_0} . Если существует $b \in Fr_{s_0}^-$ такой, что $x \leqslant b$, то $x \in Fr_{s_0}$. В противном случае существует n — концевая вершина \widetilde{D}_{s_0} такая, что $f_{s_0}(n) = x \lor b$, где $b \in Fr_{s_0}^-$ или b = 0. Если существует $s_1 > s_0$ такой, что $f_{s_1}(n) \neq f_{s_0}(n)$, то это означает, что на каком-то шаге, большем s_0 , действовало требование R_m^0 , где $n \preccurlyeq m$. В этом случае существует $b' \in Fr_{s_1}^-$ такое, что $x \leqslant b'$. Значит, $x \in Fr_{s_1}$.

Если для всех $s \geqslant s_0$ $f_s(n) = f_{s_0}(n)$, то n — концевая вершина D. Значит, существует $s_1 \geqslant s_0$ такое, что для всех $s \geqslant s_1$ $n \in F_s$. Далее, если $f_s(n) \notin Fr_s$, то требование R_n^1 привлекает внимание на шаге s. Значит, существует $s_2 \geqslant s_1$ такой, что $f_{s_2}(n) \in Fr_{s_2}$, а тогда $x \in Fr_{s_2}$.

Лемма 13. Fr(A) вычислимо перечислим.

Доказательство. Так как

$$x \in Fr(A) \iff \exists x_1 \dots \exists x_k \bigwedge_{i=1}^k x_i \in Fr \bigwedge x = x_1 \vee \dots \vee x_k$$

и множество Fr вычислимо перечислимо, то Fr(A) вычислимо перечислим.

Лемма 14. A порожедается \widetilde{A} и Atom(A).

Доказательство. Если $x,y\in A$, то будем писать $x\sim y$, если $x\bigtriangleup y\in Fr(A)$. Пусть $x\in A$, тогда существует s_0 такое, что $x\in A_{s_0}$. Легко заметить, что существуют n_1,\ldots,n_k — концевые вершины \widetilde{D}_{s_0} такие, что $x\sim f_{s_0}(n_1)\vee\cdots\vee f_{s_0}(n_k)$. Положим $C_{s_0}=\{n_1,\ldots,n_k\}$.

Пусть на шаге $s \geqslant s_0$ мы уже построили C_s . Рассмотрим шаг s+1. Если на нем действует требование вида R_m^1 или R_m^0 случая (1), то положим $C_{s+1} = C_s$. Если действует требование R_m^0 и имеет место случай (2), то рассмотрим k — концевую вершину \widetilde{D}_s из определения случая (2). Положим $C_s' = C_s \setminus \widehat{m}$. Если $k \leqslant n \leqslant S(m)$ для некоторого $n \in C_s$, то положим $C_{s+1} = C_s' \cup \{m\}$, иначе положим $C_{s+1} = C_s'$.

 $C_{s+1}=C_s'\cup\{m\}$, иначе положим $C_{s+1}=C_s'$. Понятно, что для всех $s\geqslant s_0$ $x\sim\bigvee_{n\in C_s}f_s(n)$. Так как в C_s мы добавляем вершины все меньшего и меньшего уровня, то существует $C=\lim_s C_s$ и $x\sim\bigvee_{n\in C}f(n)$. Так как $\bigvee_{n\in C}f(n)\in\widetilde{A}$, то получаем, что $A=\operatorname{gr}(\widetilde{A}\cup Atom(A))$.

По теореме 2 об изоморфизме получаем, что $A\cong \widetilde{A}\cong B.$ По лемме 13 Fr(A) вычислимо перечислим. Теорема доказана.

Теорема 4. Пусть B- вычислимая булева алгебра такая, что множество атомов B бесконечно и Fr(B) вычислимо перечислим. Тогда существует вычислимая булева алгебра $A\cong B$ такая, что множество Atom(A) вычислимо.

Доказательство. Рассмотрим сильно вычислимую последовательность конечных булевых алгебр $\{B_i\}_{i\in\omega}$ такую, что $B_0=\{\mathbf{0},\mathbf{1}\},\ B_{i+1}=\operatorname{gr}(B_i\cup\{a_i\})$, где a_i — атом B_{i+1} и $B=\bigcup_{i\in\omega}B_i$, а также сильно вычислимую последовательность $\{Fr_i\}_{i\in\omega}$ такую, что $Fr_0=\varnothing,\ Fr_i\subseteq Fr_{i+1}$ и $Fr(B)=\bigcup_{i\in\omega}Fr_i$.

Построение нужной булевой алгебры будем производить по шагам. На шаге s будет построена конечная подалгебра A_s булевой алгебры B_s и множество At_s , состоящее из атомов A_s . Кроме того, любой атом A_s , не входящий в At_s , является атомом B_s .

Шаг 0. Положим $A_0 = B_0$ и $At_0 = \emptyset$.

Шаг s+1. Пусть $B_{s+1}=\operatorname{gr}(B_s\cup\{a_s\})$, где a_s — атом B_{s+1} . Пусть c — атом A_s такой, что $a_s\leqslant c$. Если $c\in At_s$, то положим $A_{s+1}=A_s$, если $c\notin At_s$, то положим $A_{s+1}=\operatorname{gr}(A_s\cup\{a_s\})$. Положим $At_{s+1}=\{x\in A_{s+1}\mid x$ — атом A_{s+1} и $\exists y\in Fr_{s+1}\cap A_{s+1}\; (x\leqslant y)\}$. На этом шаг s+1 завершен.

Пусть $\widetilde{A}=\bigcup_{i\in\omega}A_i$ и $At=\bigcup_{i\in\omega}At_i$. Заметим, что $Atom(\widetilde{A})=At$. Действительно, пусть a— атом \widetilde{A} , тогда a— атом A_s для почти всех s. Если $a\notin At$, то a должен быть атомом B, так как иначе мы бы разделили его на несколько частей. Таким образом, $a\in Fr(B)$ и, по нашему построению, a будет перечислен в At_s на некотором шаге s.

Каждый атом \widetilde{A} является объединением конечного числа атомов из B, так как $At \subseteq Fr(B)$.

Пусть b- атом B. Рассмотрим первый шаг s, такой что $b \in B_s$. Пусть $b \leqslant a$, где a- атом A_s . Если $a \in At_s$, то a- атом \widetilde{A} . Если $a \notin At_s$, то a=b и в этом случае a также будет атомом \widetilde{A} . Таким образом, каждый атом B лежит под некоторым атомом \widetilde{A} . Отсюда следует, что множество атомов \widetilde{A} бесконечно и $Al(\widetilde{A}) \subseteq Al(B) \subseteq S(B)$.

Покажем, что $B = \operatorname{gr}(A \cup Atom(B))$. Возьмем $b \in B$ и рассмотрим наименьший шаг s, такой что $b \in B_s$. Тогда $b = b_1 \vee \ldots \vee b_k$, где b_1, \ldots, b_k — атомы B_s . Рассмотрим $a = a_1 \vee \ldots \vee a_k \in A_s$, где a_i — это атом A_s , такой что $b_i \leqslant a_i$. Нетрудно видеть, что $a \triangle b \in Fr(B)$. Следовательно, $B = \operatorname{gr}(\widetilde{A} \cup Atom(B))$

Таким образом, по теореме 2 об изоморфизме $\widetilde{A}\cong B$. Так как \widetilde{A} вычислимо перечислимое множество, то существует разнозначная вычислима функция f такая, что $\rho f=\widetilde{A}$. С помощью функции f определим на $\mathbb N$ вычислимые функции \vee , \wedge и C так, чтобы $A=\langle \mathbb N,\vee,\wedge,C\rangle$ была вычислимой булевой алгеброй, изоморфной \widetilde{A} . Так как $x\in Atom(A)\iff f(x)\in At$ и множество At вычислимо перечислимо, то множество Atom(A) вычислимо перечислимо, а значит и вычислимо.

Теперь докажем основную теорему о булевых алгебрах с 1-низким множеством атомов.

Теорема 5. Пусть B — вычислимая булева алгебра и множество атомов B является 1-низким, тогда существует вычислимая булева алгебра $A \cong B$ такая, что множество Atom(A) вычислимо.

Доказательство. Так как Fr(B) является Σ_1^0 -множеством относительно Atom(B), а Al(B) является Π_1^0 -множеством относительно Atom(B), то из того, что множество Atom(B) 1-низкое следует, что Fr(B) и Al(B) являются Δ_2^0 -множествами. Если B содержит конечное число атомов, то доказывать нечего, если B содержит бесконечное число атомов, то доказательство теоремы следует из теорем 3 и 4.

После того, как было получено доказательство теоремы 5, П.Е. Алаев указал на то, что в работе Дж. Найт и М. Стоба [9] содержится доказательство такого утверждения: если булева алгебра B является Δ_2^0 -алгеброй с предикатами, выделяющими множество атомов, идеал Фреше и идеал безатомных элементов, то существует булева алгебра $A \cong B$, которая является вычислимой вместе с предикатом, выделяющим множество атомов. С помощью этого утверждения можно получить еще одно доказательство теоремы 5.

§4. Открытые проблемы. В свете полученных результатов возникли следующие открытые вопросы: является ли спектр идеала безатомных элементов в вычислимой булевой алгебре характеристики (1,1,0) или (1,0,1) замкнутым вверх, а также, существует ли вычислимая булева алгебра характеристики (1,1,0) или (1,0,1), у которой идеал безатомных элементов наследственно невычислим?

В связи с теоремой 5 возник такой вопрос: пусть спектр множества атомов в вычислимой булевой алгебре содержит n-низкую степень, для некоторого n, тогда содержит ли он вычислимую степень?

Ответы на эти вопросы могут дать более глубокое понимание строения спектров множества атомов и безатомных элементов в вычислимых булевых алгебрах.

В заключение, автор благодарит своего научного руководителя, С.С. Гончарова, за постановку и обсуждение рассматриваемых в этой статье интересных проблем, а также рецензента за полезные замечания по оформлению работы.

Список литературы

- [1] В.Н. Власов, С.С. Гончаров, О сильной конструктивизируемости булевых алгебр элементарной характеристики (1,1,0), Алгебра и логика, 32, No. 6, 618–630, 1993.
- [2] С.С. Гончаров, Счетные булевы алгебры и разрешимость, Научная книга, Новосибирск, 1996.

- [3] С.С. Гончаров, Р. Доуни, Д. Хиршфельд, Спектры степеней для отношений на булевых алгебрах, Алгебра и логика, 42, No. 2, 182–193, 2003.
- [4] С.С. Гончаров, Ю.Л. Ершов, Конструктивные модели, Научная книга, Новосибирск, 1999.
- [5] Х. Роджерс, Теория рекурсивных функций и эффективная вычислимость, Мир, Москва, 1972.
- [6] C.J. Ash and A. Nerode, Intrinsically recursive relations, in J.N. Crossley (ed.), Aspects of Effective Algebra (Clayton, 1979), (Upside Down a Book Co., Yarra Glen, Australia, 1981), 26-41.
- [7] R. Downey, Every recursive Boolean algebra is isomorphic to one with incomplete atoms, Ann. Pure and Appl. Logic, 60(1993), 193-206.
- [8] V.S. Harizanov, Degree spectrum of a recursive relation on a recursive structure, PhD Thesis, University of Wisconsin, Madison, WI (1987).
- [9] J. Knight, M. Stob, Computable Boolean algebras, J. Symb. Logic, 65, No. 4, 2000, 1605–1623.
- [10] J.B. Remmel, Recursive isomorphism types of recursive Boolean algebras, J. Symb. Logic 46(1981), 572-594.
- [11] R.I. Soare, Recursively Enumerable Sets and Degrees, Perspect. Math. Logic (Springer-Verlag, Heidelberg, 1987).

Семухин Павел Михайлович, Новосибирский государственный университет, Механико-математический факультет.

The University of Auckland, Department of Computer Science, Private Bag 92019, Auckland, New Zealand

e-mail: pavel@cs.auckland.ac.nz