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Abstract

Khoussainov and Nerode [14] posed various open questions on model-theoretic
properties of automatic structures. In this work we answer some of these ques-
tions by showing the following results: (1) There is an uncountably categor-
ical but not countably categorical theory for which only the prime model is
automatic; (2) There are complete theories with exactly 3,4,5, . . . countable
models, respectively, and every countable model is automatic; (3) There is a
complete theory for which exactly 2 models have an automatic presentation; (4)
If LOGSPACE = P then there is an uncountably categorical but not count-
ably categorical theory for which the prime model does not have an automatic
presentation but all the other countable models are automatic; (5) There is a
complete theory with countably many countable models for which the saturated
model has an automatic presentation but the prime model does not have one.
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1. Introduction

This paper is devoted to the study of automatic structures from the model-
theoretic point of view. Automatic structures are the algebraic structures whose
functions and relations can be recognised by finite automata. Historically, this
notion was introduced in the work of Hodgson [12], and later in Khoussainov
and Nerode [13] and Blumensath and Grädel [2].

Automatic structures are famous in theoretical computer science because of
their decidability properties. Namely, the model checking problem for automatic
structures is decidable. In other words, there is an algorithm that, given an
automatic structure A, a first order formula ϕ(x̄) and a tuple ā of elements
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from A, it decides whether A � ϕ(ā). In particular, automatic structures are
decidable structures (a structure A is decidable if there is an algorithm that
decides whether A � ϕ(ā) holds, for any first order formula ϕ(x̄) and any tuple
ā ∈ A). This, in turn, implies that the first order theory of any automatic
structure is decidable. One can use this property to prove the decidability of first
order theories for many mathematical structures, for example, the Presburger
arithmetic (N,+).

A lot of work has been devoted to study the question as to which structures
have automatic presentations [3, 5, 15, 20, 21, 23]. In some cases we have an
elegant characterisation of automatic structures in a given class, for instance
[5, 15]:

• An ordinal α is automatic if and only if α < ωω.

• The additive semigroup of an ordinal ωα is automatic if and only if α < ω.

• A Boolean algebra B is automatic if and only if B is either finite or iso-
morphic to Bnω , where Bω is the algebra of all finite and co-finite subsets
of the natural numbers.

On the other hand, it is still an open problem to describe automatic Abelian
groups and automatic linear orders. Another important question that attracted
attention is how difficult are the isomorphism problems for various classes of
structures [15, 18, 19].

Recently, Khoussainov and Nerode [14] linked automatic structures to model
theory and posed a list of important questions arising from this connection.
Some of those questions are answered in the present work. The interested reader
is referred to Khoussainov and Rubin [17, 22] for general surveys on automatic
structures.

To describe in more detail what it means for a structure to be automatic, we
need a notion of convolution. A convolution of two strings u and v in an alphabet
Σ is a string Conv(u, v) in alphabet (Σ ∪ {�})2 which is obtained by putting u
above v. If the strings have different length, then we use a new padding symbol
� to fill in the shorter string. For example, if u = ab and v = bbaa, then

Conv(ab, bbaa) =

(
a

b

)(
b

b

)(
�
a

)(
�
a

)
.

Similarly, one can define a convolution of several finite strings.
An n-ary relation R on finite strings is called automatic if the set of convo-

lutions of all tuples from R is recognizable by a finite automaton. A function
is called automatic if its graph is automatic. Intuitively, an automatic function
can be thought of as a one whose result can be computed “locally”, using a fixed
finite amount of external memory. A typical example of an automatic function
is the addition operation on natural numbers in binary presentation. In this
case, an automaton computes the addition bitwise, remembering only one carry
bit when necessary.

2



An algebraic structure A is called automatic if its domain, functions and
relations are automatic. A structure is said to have an automatic presentation
if it is isomorphic to an automatic structure. Typical examples of automatic
structures are [13, 15, 21]:

• the ordering of the natural numbers (ω,≤) and the ordering of the rationals
(Q,≤);

• finitely generated Abelian groups, in particular, the ordered group (Z,+,
≤);

• Prüfer groups Z(p∞) for every prime p;

• countably dimensional vector spaces over finite fields;

• the Boolean algebra of all finite and co-finite subsets of N.

On the other hand, the following structures do not have automatic presentations
[5, 15]:

• the natural numbers with multiplication (N,×);

• the free group over more than one generator;

• the random graph;

• the atomless Boolean algebra.

There was a long standing open question whether the group of rationals under
addition (Q,+) is automatic. This question was recently solved by Tsankov [23]
who showed that (Q,+) does not have an automatic presentation.

The topic of our work was inspired by computable model theory. Com-
putable structures are generalisations of automatic structures in the sense that
their operations are computable by Turing machines, rather than by finite au-
tomata. One of the general questions studied in computable model theory can
be stated as follows: given a complete first order theory T , which models of T
have computable presentations? In particular, when the prime or the saturated
model of T is computable?

The latter question is especially interesting in the case of uncountably cate-
gorical theories (recall that T is called uncountably categorical if any two models
of T of cardinality ℵ1 are isomorphic). In [9, 10, 16], examples of such theories
were constructed with the following properties:

(1) only the prime model of a theory is computable;

(2) only the saturated model of a theory is computable;

(3) all models except the prime one are computable;

(4) all models except the saturated one are computable.
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For our purpose, we will reformulate the above mentioned question as follows:
given a complete first order theory T , describe the automatic models of T . This
general question can be divided into a number of more specific subquestions. In
our paper we consider the following questions, which are stated as Question 3.2
and Question 3.3 by Khoussainov and Nerode [14].

Question 3.2. Let n ≥ 1 be a natural number. Does there exist a theory with
exactly n automatic models up to isomorphism? (When n = 1, the theory should
not be ℵ0-categorical.)

Question 3.3. Let T be a decidable complete first order theory such that T has
only countably many countable models. Is any of the following true?

1. If T has an automatic model, then all countable models of T are automatic.

2. If T is ℵ1-categorical and has an automatic model, then all countable mod-
els of T are automatic.

3. If T has finitely many countable models one of which is automatic, then
all countable models of T are automatic.

We also consider a question mentioned after Question 3.4 in [14]: does the
existence of an automatic saturated model of T imply that the prime model of T
is also automatic? This question is interesting since if one considers decidable
models instead of automatic ones, then the answer is positive: the existence of
a decidable saturated model implies the existence of a decidable prime model.
However, we will show that in the automatic case the answer is negative.

The paper is organised as follows. The next section contains necessary pre-
liminaries. In Section 3 we provide a negative answer to parts 1 and 2 of
Question 3.3 from [14] by constructing an ℵ1-categorical theory for which only
the prime model is automatic. In Section 4 we give another example of a theory
for which only the prime model is automatic. In Section 5 we prove under the
assumption LOGSPACE = P that there is an ℵ1-categorical theory for which
all countable models except the prime one are automatic (Theorem 10). Next
we show that without the above assumption we can construct a complete theory
that has countably many countable models and for which the saturated model is
automatic but the prime one is not (Theorem 11). In Section 6 we give examples
of theories with finitely many automatic models. Namely, for every n ≥ 3 we
construct a complete theory with n countable models all of which are automatic
(Theorem 13 and Corollary 14). Then in Theorem 15 we construct a complete
theory which has exactly two automatic models, however the theory itself will
have uncountably many countable models.

2. Preliminaries

A (nondeterministic) finite automaton is a tuple A = (S,Σ, I, T, F ), where

• S is a finite set of states,
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• Σ is a finite alphabet,

• I ⊆ S is the set of initial states,

• T is the transition function T : S × Σ → P(S), where P(S) is the power
set of S, and

• F ⊆ S is the set of final states.

An automaton A accepts a word w = a1 . . . an ∈ Σ∗ if there is a sequence of
states s0s1 . . . sn such that s0 ∈ I, sn ∈ F and for every i < n, si+1 ∈ T (si, ai+1).
The set of all words accepted by A is called the language of A and denoted L(A).

Given k strings w1, . . . , wn in alphabet Σ, a convolution of the tuple (w1, . . . ,
wn) is the word Conv(w1, . . . , wn) of length maxi |wi| in alphabet (Σ ∪�)

n
,

where � is a new padding symbol, defined as follows: the kth symbol of
Conv(w1, . . . , wn) is (σ1, . . . , σn), where σi is the kth symbol of wi if i ≤ |wi|
and σi = �, otherwise.

A convolution of an n-ary relation R ⊆ (Σ∗)
n

is defined as Conv(R) =
{Conv(ā) : ā ∈ R}. A relation R is called automatic (or regular) if its convolu-
tion is recognised by a finite automaton. An n-ary function f : (Σ∗)

n → Σ∗ is
called automatic if its graph is automatic.

Let A = (A;R1, . . . , Rn, f1, . . . , fm, c1, . . . , ck) be a structure in a finite lan-
guage. We say that A is automatic if for some finite alphabet Σ, the domain
A is an automatic subset of Σ∗, and the relations R1, . . . , Rn together with the
functions f1, . . . , fm are automatic. We say that a structure is finite automata
presentable if it is isomorphic to an automatic structure. To simplify the termi-
nology, we will call finite automata presentable structures just automatic.

We will often use the following well known facts about automatic languages
and relations.

Lemma 1 (The Pumping Lemma). Let L be a language which is recognizable
by an automaton with p states. Then for every w ∈ L with |w| ≥ p, there are
strings x, y, z such that w = xyz, y 6= ε and xykz ∈ L for all k ≥ 0.

An n-ary relation R ⊆ (Σ∗)
n

is called locally finite if there exist k, ` such

that k+ ` = n and for every x̄ ∈ (Σ∗)
k

the set {ȳ ∈ (Σ∗)
`

: (x̄, ȳ) ∈ R} is finite.

Lemma 2 (Constant Growth Lemma [15]). Let the relation R(x̄, ȳ) ⊆ (Σ∗)
n

be locally finite. If Conv(R) is recognizable by an automaton with p states, then
for every (x̄, ȳ) ∈ R,

max
i
|yi| ≤ max

j
|xj |+ p.

Lemma 3 ([15]). Let L be an infinite regular language. Then there are constants
C and c such that

L≤n+1 ≤ C|L≤n| for all n, and

|L≤n| ≥ n/c for all sufficiently large n.

Here, L≤n denotes L ∩Σ≤n, the set of all strings from L of length less than or
equal to n.
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Lemma 4 (Hodgson [12]; Khoussainov and Nerode [13]). If a relation R can be
defined by a first order formula from other automatic relations (possibly using
additional parameters and quantifiers ‘there exist infinitely many’ and ‘there
exist finitely many’), then R is itself automatic.

A theory is a consistent set of sentences (first order formulas without free
variables) in some language L. A theory T is complete if for every sentence ϕ
in language L, either ϕ ∈ T or ¬ϕ ∈ T . The first order theory of a structure A
is Th(A) = {ϕ : A � ϕ}, the set of sentences that hold in A. Two structures A
and B are called elementary equivalent if Th(A) = Th(B).

A model A of a complete theory T is called prime if it is elementarily em-
beddable into every model of T . A countable model A of T is called countable
saturated (or just saturated for short) if A realises all complete types of T over
finite sets of parameters. The prime and saturated models are unique up to
isomorphism (in the case when they exist). Moreover, every countable model
of T can be elementarily embedded into the countable saturated model. It is
well known that if T has at most countably many countable models, then T
has both the countable saturated and the prime models (for more details, see
Hodges’ textbook on model theory [11]).

A theory T is called κ-categorical if any two models of T of cardinality κ
are isomorphic. An ℵ1-categorical theory is also called uncountably categorical.
The countable models of ℵ1- but not ℵ0-categorical theory can be listed in an
ω + 1-chain of elementary embeddings

A0 4 A1 4 · · · 4 Aω,

where A0 is the prime and Aω is the countable saturated model of the theory
(see [1]). The first order theories of the following structures provide typical
examples of uncountably categorical theories: the successor structure (N, S),
where S(x) = x+ 1, vector spaces, algebraically closed fields, etc.

To show the elementary equivalence of some structures, we will use the
method of Ehrenfeucht–Fräıssé games. The definition follows the textbook of
Hodges [11]; an interested reader can find more details on Ehrenfeucht-Fräıssé
games in chapters 3.2 and 3.3, including a proof of Theorem 6 below.

Definition 5. Let A, B be the structures of the same language L and let k
be a natural number. Then EFk[A,B], the unnested Ehrenfeucht–Fräıssé game
of length k on A and B, is defined as follows. There are two players ∀ and ∃.
The game is played in k steps. At the ith step of the play, player ∀ takes one
of the structures A, B and chooses an element of this structure; then player ∃
chooses an element of the other structure. Each player is allowed to see and
remember all previous moves in the play. At the end of the play, sequences
x̄ = (xi : i < k) ∈ Ak and ȳ = (yi : i < k) ∈ Bk have been chosen. The pair
(x̄, ȳ) is known as the play. We say that player ∃ wins the play (x̄, ȳ) if and only
if
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for every unnested atomic formula ϕ with m variables and for every
i0, i1, . . . , im−1 < k it holds that A |= ϕ(xi0 , xi1 , . . . , xim−1) ⇐⇒
B |= ϕ(yi0 , yi1 , . . . , yim−1

).

We write A ≈k B to mean that player ∃ has a winning strategy for the game
EFk[A,B].

Theorem 6 (Ehrenfeucht [6] and Fräıssé [7, 8]). Let L be a finite first order lan-
guage and let A and B be L-structures. The structures A and B are elementary
equivalent if and only if A ≈k B for every k ∈ ω.

3. Automatic prime model and non-automatic saturated model

Khoussainov and Nerode [14] asked whether for an ℵ1-categorical theory it is
true that whenever one model of the theory has an automatic presentation then
all countable models have automatic presentations (see Question 3.3). The next
result provides a negative answer to this question.

For a prime p, let Rp = {m/pn : m,n ∈ Z, n ≥ 0} be the subgroup of
rationals with denominators powers of p. The Prüfer group is defined as the
quotient group Z(p∞) = Rp/Z.

Theorem 7. The Prüfer group Z(p∞) has an ℵ1-categorical but not ℵ0-cate-
gorical theory such that the prime model is the only automatic model of the
theory.

Proof. Let Tp be the first order theory of Z(p∞). It is well known that Tp is
ℵ1-categorical and all countable models of Tp are Z(p∞)⊕Qn for n ∈ ω ∪ {ω}
[11, Appendix A.2]. Nies and Semukhin [21] provide an automatic presentation
of the group Rp in which the set Z of integers is also automatic. This gives us an
automatic presentation of the Prüfer group since Z(p∞) = Rp/Z. So it remains
to show that none of the models Z(p∞) ⊕ Qn with n > 0 is automatic. The
proof follows by invoking more general Proposition 8 below and observing that
for every n > 0 the group Z(p∞)⊕Qn is a supergroup of the additive group of
the rational numbers.

Proposition 8. Let (E,+) be an Abelian supergroup of the rational numbers
such that for every p ∈ {1, 2, 3, . . .} and every y ∈ E there are only finitely many
x ∈ E with p · x = y. Then the group (E,+) is not automatic.

Proof. Tsankov [23, Theorem 7] showed that for any constant C and a function
h : N→ N, there is no sequence of finite subsets A0, A1, . . . of the set of rational
numbers such that

(I) 0 ∈ A0 and |A0| ≥ 2;

(II) An +An ⊆ An+1;

(III) |An+1| ≤ C · |An|;
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(IV) {m ∈ Q : p ·m ∈ An} ⊆ An+h(p) for all p ∈ {1, 2, 3, . . .}.

Here we are using the following notations: |D| is the cardinality of a finite set
D and |d| is the length of a string d.

Now assume by way of contradiction that the above (E,+) is automatic
and identify its automatic presentation with the group. Then the domain E
is regular, and every relation definable from + and finitely many elements of
the group is automatic [12, 13]. Let A be a subset of E such that (A,+) is
isomorphic to a subgroup of the rationals. Let c0 be the first length such that
−1, 0,+1 are represented in A by strings shorter than c0 and let c1 be a positive
constant such that

∀x, y ∈ E |x± y| ≤ max{|x|, |y|}+ c1.

Now let An = {e ∈ A : |e| ≤ c0 + c1 · n}. Note that (I) is satisfied by the choice
of c0, and (II) by the choice of c1.

The proof for (III) goes over the corresponding property for E. Let En =
{e ∈ E : |e| ≤ c0 + c1 · n}, and let Dn be a maximal subset of An+1 such that
0 ∈ Dn and for all u 6= v from Dn, we have that u− v /∈ En.

First, we show that there is a constant C such that |Dn| ≤ C for all n. It is
enough to prove this for all n ≥ 1. In this case note that

∀x, y ∈ En−1 ∀u, v ∈ Dn (x+ u = y + v → x = y and u = v).

Indeed, if u = v this is obvious. Otherwise, u − v = y − x ∈ En contradicting
to the choice of Dn. Since En−1 +Dn ⊆ En+2, we have

|En−1| · |Dn| ≤ |En+2|.

By one of the basic properties of regular languages, there is a constant C such
that |En+2| ≤ C · |En−1|. Thus |Dn| ≤ C.

Now we will show that every v ∈ An+1 is of the form u± x for some u ∈ Dn

and x ∈ An, that is An+1 ⊆ Dn ± An. So consider any v ∈ An+1. If v ∈ Dn

then v is of the given form as every member in Dn is the sum of 0 and itself.
If v /∈ Dn then, as Dn is a maximal set of its form, the set Dn ∪ {v} violates
the constraint on the choice of Dn; so there are u ∈ Dn and x ∈ En such that
v−u = x or v−u = −x. Note that x is actually in An as both v, u ∈ A. Hence
v is of required form.

Therefore, we obtain that

|An+1| ≤ |Dn ±An| ≤ 2|Dn| · |An| ≤ 2C · |An|.

This completes the proof that (III) holds.
To show (IV), fix p ∈ {1, 2, 3, . . .} and consider the relation

R(x, y) ⇐⇒ p · x = y.

Note that R is automatic, and by our assumption the set {x : R(x, y)} is finite
for every y ∈ E. Therefore, due to the pumping lemma there is a constant h(p)
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such that |x| ≤ |y| + h(p) for all (x, y) ∈ R. So if m ∈ A and p ·m ∈ An, then
R(m, p ·m) holds and |m| ≤ |p ·m|+ h(p). Hence we obtain that m ∈ An+h(p).

Therefore, in the case that (E,+) is automatic there is a family A0, A1, . . .
of finite subsets of the rationals which satisfies the four conditions (I), (II), (III)
and (IV) given above. Since Tsankov [23] showed that such a family of sets
cannot exist, (E,+) cannot be an automatic group.

The version of Proposition 8 when E is assumed to be torsion-free is also a
corollary of a result of Braun and Strüngmann [3].

4. Another theory with automatic prime model

Here is another example of a complete theory for which only the prime model
has an automatic presentation.

Theorem 9. A countable model of the elementary theory of (Z,+, <) is auto-
matic if and only if it is the prime model.

Proof. Let T = Th(Z,+, <); it is well known that (Z,+, <) is an automatic
prime model of T . Now assume that (A,+, <) is an automatic model of T
which is different from (Z,+, <). Consider the relation ≡ given by

x ≡ y iff {z : x < z < y ∨ y < z < x} is finite.

In other words, x ≡ y iff x − y ∈ Z when Z is considered as a subgroup of A.
Note that this relation is automatic since it is first order definable from other
automatic relations using quantifier ‘there exists finitely many’. Furthermore,
if x < y, x 6≡ y, v ≡ x and w ≡ y then v < w. Also if x ≡ y and v ≡ w then
x + v ≡ y + w. This can be seen by considering the differences a = x − y and
b = v − w. Both a, b are in Z and since x + v = y + w + a + b, we have that
x+ v is the sum of y + w and an element from Z. Hence x+ v ≡ y + w.

So we can consider the quotient structure (B,+, <) of (A,+, <) modulo ≡.
Note that the model (B,+, <) is also automatic. Now for every x ∈ B, there
exists a y ∈ B with y + y = x. The reason is that since (A,+, <) is elementary
equivalent to (Z,+, <), x as an element of A is either y + y or y + y + 1 for
some y ∈ A. Therefore, x as an element of A is ≡-equivalent to y + y. In the
same way one can show that every x ∈ B can be divided by any nonzero integer
from Z. Hence the group (B,+, <) is divisible. Note that (B,+, <) is nontrivial
as we supposed that (A,+, <) is different from (Z,+, <). Due to Tsankov [23,
Theorem 2 (i)] the group (B,+) cannot be automatic since it is torsion-free (by
being linearly ordered) and p-divisible for infinitely many primes.

In this context it is interesting to point out that (Z,+) has an automatic
presentation but its theory does not have a prime model. Therefore, the theory
of an automatic model may have and may not have a prime model; so both
ways are possible, answering a question of Khoussainov and Nerode [14] in the
comment after Question 3.4.
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5. Automatic saturated models and non-automatic prime models

Khoussainov and Nerode [14] asked in the comment after Question 3.4 whether
the existence of an automatic (saturated) model of a theory implies the existence
of an automatic prime model of the theory. In this section, a negative answer will
be provided. First, in Theorem 10 a stronger answer is given under an unresolved
complexity-theoretic hypothesis LOGSPACE = P and then a weaker answer to
the same question without a complexity-theoretic assumption is provided in
Theorem 11.

Theorem 10. If LOGSPACE = P then there is an ℵ1-categorical but not ℵ0-
categorical theory such that all countable models of the theory except the prime
one have an automatic presentation.

Proof. Let L be a variant of Kolmogorov complexity based on a machine U
which is universal by adjunction such that L(n) is the length of the shortest
binary string x such that U with input x outputs 0n and uses at most space n
for the computation. Here U is assumed to be a three-tape machine with a read-
only input-tape, a work-tape and a write-only unidirectional output-tape. The
head on the input-tape can only move within the boundaries of x so that there
are |x| + 1 many possible head-positions. Note that U is universal with a con-
stant factor of space usage among all Turing machines; furthermore, “universal
by adjunction” means that the simulated Turing machine with corresponding
input is coded by a self-delimiting prefix containing the Turing table of the sim-
ulated machine followed by its input, where the same prefix can be used for any
computation of that Turing machine. For all m, let

b0 = 1, bm+1 = 22
2bm

and
am = min{n ≥ bm : L(n) ≥ bm}.

Note that am ≤ 2bm for all m.
The models of the theory will be directed graphs. The prime model consists

of two copies of finite circles of length 2am + 4, for each m, in the form of a
successor relation connecting each element of the circle with the next one. The
further models are obtained by adding to the prime model finitely or infinitely
many copies of the integers with the successor relation from x to x+ 1, that is,
chains that are infinite in both directions. We will show that the prime model
is not automatic while the other models are automatic under the complexity-
theoretic assumption given above.

Suppose that the prime model is automatic. First note that no circle of
length 2am + 4 can have an element shorter than log(bm): To see this, assume
by way of contradiction that this is not true. Note that the set of all convolutions
of x and 0n where x is part of a circle of length n is in P; this is because one
can start from x and compute n times the successor of the current tape value
and compare whether the result is indeed again equal to x after each round.
If the number of rounds needed is exactly n then the convolution of x and
0n is accepted, else the convolution of x and 0n is rejected. Note that each
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successor of a string is at most a constant longer so that the longest string in
the computation has the length |x|+c ·n for some constant c; furthermore, each
construction of a successor is done in linear time as the corresponding function
giving the successor of a string is automatic. Hence the whole process is in
polynomial time.

By assumption the same set is recognised by a LOGSPACE-machine V . One
can modify V such that V instead of the convolution of x and 0n takes as input
a prefix-free coding of the two parameters x and bin(n) which are coded in the
form 0|x|1x0|bin(n)|1bin(n) where bin(n) is the binary representation of n. Now
V can check in linear space whether x belongs to a circle of length n.

In the next step one can replace V by a three-tape machine W which
searches for n that corresponds to given x. On input x, W writes the part
0|x|1x0|bin(n)|1bin(n) onto one half of the work tape and starts with the initial
value n = 0. Whenever n < 2 or the simulation shows that V does not accept
0|x|1x0|bin(n)|1bin(n) then W increases n by 1, adjusts the input on the left side
of the work tape, writes a 0 onto the output-tape and reruns the simulation.
Once a pair is accepted, the simulation stops. Note that the work space used by
W is linear in 0|x| 1x0|bin(n)| 1 bin(n) for the final value of n, hence, for almost
all n generated by a small x it is clearly below n.

It follows that whenever a circle of length 2am+4 is generated by a very small
x, one could compute 0am from this x by a suitable modification of W using
space below am and would get that L(am) is linear in x. This modification
can be translated into U and the work-space usage would increase only by a
linear factor and therefore stay below am for infinitely many m. In other words,
L(am) < bm for infinitely many m, a contradiction. Hence, for almost all m,
only the circles belonging to a0, a1, . . . , am−1 can contribute to strings shorter
than log(bm) and these are roughly O(am−1) many strings. That is, for almost
all m, the number 5·2bm−1 would be a safe upper bound on this number of strings
although every regular set (as the domain of the automatic presentation) has at
least log(bm)/c strings below the length log(bm) which is, by the choice, at least

22
bm−1

/c. This gives a contradiction and thus the prime model is not automatic
under the assumption LOGSPACE = P.

Now it is shown that the next model after the prime model is automatic.
For this, one needs the following Turing machine V .

The machine V is defined such that it halts on input x iff x = 0n (n times
the symbol 0) and n = am for some m; one can choose the tape alphabet size of
V large enough to make sure that V uses space |x| when checking whether U(x)
is equal to some am or not. If x /∈ 0∗ then V runs forever. On input x = 0n,
V computes the unique m with bm ≤ n < bm+1 which can be done in space n,
provided that the alphabet size is large enough. Afterwards V computes 0bm .
Having this, V marks for each x with |x| ≤ bm using the domain-alphabet of U
how much space U(x) uses in the case that U(x) terminates and uses at most
space n; these markings can be done in form of a word w = w1w2 . . . wn such
that wk = 1 iff there is a some terminating computation among the tested once
using space k. Note that given x with |x| ≤ n the machine V can find out in
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space n whether the computation of U(x) has to be considered; the reason is
that V just discards the computation whenever it at some time requests more
space as n and whenever it runs longer than dn steps for some suitable constant
d as such a computation runs in an infinite loop. In the case that the outcome
of these tests is that w = 1n−10 then n = am and V halts; otherwise V runs
forever in an infinite loop.

In the following let (x, y, z) denote the convolution of x, y, z. The basic cycle
looks as follows, only x and y are given and the component z is left out as it is
always either 0 or 1 or 2 throughout the basic cycle.

Tuple Conv(x,y,z) Comment

f 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8 Rotate Forward

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8

8 f 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 Rotate Forward

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8

8 8 f 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 Rotate Forward

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8

0 8 8 f 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # Rotate Forward

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8

# 0 8 8 f 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 Check 1,

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8 Change f -> b

# 0 8 8 b 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 Rotate Backward

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8

0 8 8 b 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # Rotate Backward

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8

8 8 b 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 Rotate Backward

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8

8 b 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 Rotate Backward

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8

b 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8 Check 2,

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8 Change b -> f

f 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8 Origin,

# 0 2 2 # 0 2 3 # 0 2 4 # 0 3 3 # 0 8 8 starting configuration

Now let A be the set of all such configurations where x is a sequence of Turing
configurations separated by #, so is y and the special separator “f” or “b” is
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between the two first occurrences of # in y. Furthermore, y starts always with
# and x and y have always the same length. Furthermore, z ∈ {0, 1, 2}.

Let B1 be the set of all such configurations where Check 1 is done and B2

be the set of all such configurations where Check 2 is done. For each pair
(x, y, z) ∈ B1 ∪B2, let (x′, y′, z) be the next member in the cycle. Furthermore,
for (x, y, 2) ∈ B1, let “outgoing” be the length-lexicographically next pair in B1

after (x, y, 2). Note that (x, y, z) and “outgoing” belong to different cycles and
that “outgoing” is of the form (x′′, y′′, 0) for some x′′, y′′. Now one modifies the
successor relation on elements in B1 and B2 according to the following tables;
in the first table, (x, y, z) ∈ B1 and “incoming” is the last node done in a set of
cycles before reaching the cycle.

tuple Successor of Successor of
(x, y, z) (x, y, z) if (x, y, z) if
from B1 Check 1 true Check 1 false
incoming (x′, y′, 0) (x′, y′, 0)
(x, y, 0) outgoing (x′, y′, 1)
(x, y, 1) (x′, y′, 1) (x′, y′, 2)
(x, y, 2) (x′, y′, 2) outgoing

The corresponding table for Check 2 is the following; here (x, y, z) ∈ B2:

tuple Successor of Successor of
(x, y, z) (x, y, z) if (x, y, z) if
from B2 Check 2 true Check 2 false
(x, y, 0) (x′, y′, 0) (x′, y′, 1)
(x, y, 1) (x′, y′, 1) (x′, y′, 2)
(x, y, 2) (x′, y′, 2) (x′, y′, 0)

So the main thing is that if Check 1 or Check 2 turns out to be false, that
is, if the underlying (x, y) do not code an accepting computation in V , then
in at least one of these checks there is a change of the level by 1. This then
connects the cycles of level 1 and level 2 with the main thread going through
level 0 to change the levels and to run through all 3 cycles: in each cycle the
level advances by 1 or 2 modulo 3 and it takes 3 rounds to get to the outgoing
node. If Check 1 and Check 2 are both true, then the underlying (x, y) codes
an accepting computation of V and the thread goes only through level 0 while
the cycles on levels 1 and 2 are not connected but cycles of their own. Hence
these two cycles exist iff their length is am for some m and their origin code the
corresponding accepting computation of V .

One further feature has to be added: If (x, y, 0) is the length-lexicographic
least among all nodes in B1 then this cycle has not yet an incoming node; hence
one adds a descending chain . . . → 3333 → 333 → 33 → 3 → (x, y, 0) to the
model for making the thread starting at (x, y, 0) to become a chain of type
(Z, u 7→ u+ 1).
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Higher models are obtained by joining copies of the integers with successor to
the model, hence all countable models except the prime model have an automatic
presentation.

Theorem 11. There is a complete theory with countably many countable mod-
els, a countable prime model and a countable saturated model such that the
saturated model is automatic but the prime model is not.

Proof. We define the theory by constructing an automatic presentation of its
saturated model. The language of the theory consists of two symbols for binary
relation, S and R, where S defines an equivalence relation on the elements of the
model and R defines a symmetric, irreflexive relation that respects S. In other
words, if R(x, y) holds and x, y are S-equivalent to x′, y′, respectively, then
R(x′, y′) holds. Each countable model of the theory consists of possibly infinite
chains of the form a−b−. . .−c−d, where a, b, c, d denote the number of elements
in corresponding S-equivalence classes, and all members of each equivalence class
are R-connected to the members of the neighbouring equivalence classes. The
saturated model of the theory consists of the following chains:

• One of the form 2 − 1− 1− . . . − 1− 22
m·(m+1) of length m + 2 for each

m ≥ 2;

• Infinitely many of the form 2n − 1− 1− 1− 1− . . . for each n ≥ 1;

• Infinitely many of the form . . .− 1− 1− 1− 1− . . . ;

• Infinitely many of the form ω − 1− 1− 1− 1− . . . .

The prime model consists of the following chains:

• One of the form 2 − 1− 1− . . . − 1− 22
m·(m+1) of length m + 2 for each

m ≥ 2;

• Infinitely many of the form 2n − 1− 1− 1− 1− . . . for each n ≥ 2.

Note that if A is any countable model of the theory, then in addition to the
chains that exist in the prime model, A may contain a finite or infinite number
of the chains of the following forms:

• 2− 1− 1− 1− 1− . . . ;

• . . .− 1− 1− 1− 1− 1− . . . ;

• ω − 1− 1− 1− 1− . . . .

These chains are limits of the chains that exist in the prime model. So adding
them to the prime model does not change the first order theory of the structure.
This can be shown more formally using the technique of Ehrenfeucht–Fräıssé
games. On the other hand, A cannot contain chains of any other form since that
would violate the first order theory of the structure. Therefore, all countable
models of the theory must have the form described above.
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We now explain how to construct an automatic presentation of the saturated
model. The prototype of the finite chains would be the following nodes given as
convolutions of two strings x and y (an example is given for the case of m = 3):

Node (convolution of x and y) Equivalence Class Size

#000#001#010#011#100#101#110#111 2

#000#001#010#011#100#101#110#111

1#000#001#010#011#100#101#110#11 1

#000#001#010#011#100#101#110#111

11#000#001#010#011#100#101#110#1 1

#000#001#010#011#100#101#110#111

111#000#001#010#011#100#101#110# 1

#000#001#010#011#100#101#110#111

#111#000#001#010#011#100#101#110 4294967296

#000#001#010#011#100#101#110#111

To obtain multiple copies of the same node, we convolute it with a third string
z, which is equal to 032 or 132 in the case of the first node (to obtain a class of
size 2) and which is equal to any string from {0, 1}32 in the case of the last node
(to obtain a class of size 232). For the intermediate nodes, z is equal to 032.

Here is a formal construction of an automatic presentation of the saturated
model: Let S denote a regular expression for the set of strings in {0, 1}∗ that
contain at least one 0 and at least one 1, e.g., S = 1+0(0 + 1)

∗
+ 0+1(0 + 1)

∗
.

Then the domain of the structure contains the following convolutions:

(1) Conv(x, y, z) for all x, y, z ∈ {0, 1,#}∗ with |x| = |y| = |z| such that y is of
the form #0+(#S)

∗
#1+ and at least one of the following holds:

(a) x is of the form #0+(#S)
∗
#1+. In this case, z ∈ {0|x|, 1|x|} if x = y,

and z = 0|x| otherwise.

(b) x is of the form 1+#0+(#S)
∗
#1∗ and z = 0|x|.

(c) x is of the form #1+#0+(#S)
∗
. In this case, z ∈ {0, 1}|x| if the follow-

ing condition is satisfied: the #’s of x and y are located at the same
positions above each other, and every entry of the digits a1a2 . . . am
between two #’s of x or at the end of x is obtained from the corre-
sponding entry b1b2 . . . bm of y by subtracting 1 modulo 2m; here note
that m depends on the position of the corresponding entries in x and y.
If this condition does not hold, then z = 0|x|.

(2) Conv(x0k, y, z) where k ∈ ω, |x| = |y| = |z|, z = 0|x| and one of the
following holds:

(a) x and y are of the form #0+(#S)
∗
#1+ and x 6= y;
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(b) x is of the form #1+#0+(#S)
∗
, y is of the form #0+(#S)

∗
#1+ and

the condition described in the item (1c) above does not hold.

In this presentation, two convolutions Conv(x1, y1, z1) and Conv(x2, y2, z2) are
S-equivalent if x1 = x2 and y1 = y2. The relation R is defined as follows:
Conv(x1, y1, z1) is R-connected to Conv(x2, y2, z2) if y1 = y2 and one of the
following holds:

• |x1| = |x2| and x1 is a cyclic shift of x2 by one symbol to the left or to the
right;

• x1 = x20 or x2 = x10.

This structure is then enriched by adding infinitely many copies of the chains
2n−1−1−1− . . . for each n ≥ 1 and infinitely many copies of ω−1−1−1− . . .
and . . . − 1 − 1 − 1 − 1 − . . . . For example, this can be done by adding the
following convolutions to the structure (S-equivalence on these new elements is
defined in the same way as above):

• Conv(0k, 10m, z), where k, m ≥ 1, and z ∈ 0+, if k = 1, and z = 0, other-
wise. The relation R is defined such that Conv(0k, 10m, z1) is connected
to Conv(0k+1, 10m, z2) for all z1, z2. This produces infinitely many copies
of ω − 1− 1− 1− . . . .

• Conv(0k, 1n0m, z), for every n ≥ 2 and k, m ≥ 1, such that z ∈ {0, 1}n−1,
if k = 1, and z = 0, otherwise. The relation R is defined such that
Conv(0k, 1n0m, z1) is connected to Conv(0k+1, 1n0m, z2) for all z1, z2.
This produces infinitely many copies of 2n − 1− 1− . . . for each n ≥ 1.

• Conv(0k, 0m, 0), where k, m ≥ 1, and Conv(0k, 0m, 0) is connected to
Conv(0`, 0m, 0) if either |k − `| = 2 or {k, `} = {1, 2}. This produces
infinitely many copies of . . .− 1− 1− 1− 1− . . . .

It is a routine exercise to check that the domain of the structure and the relations
defined above can be recognised by finite automata.

It is quite straightforward to verify that the constructed model contains the
same chains as the saturated model. For instance, every chain added in the first
part of the construction contains a node Conv(x, y, z) such that |x| = |y| = |z|
and x, y are both of the form #0+(#S)

∗
#1+. Now consider the following cases:

• x = y and y is of the form #binm(0)#binm(1)# . . .#binm(2m − 1) (here
binm(k) is the m-digit binary number representing k). In this case, con-
dition (1c) is satisfied after shifting x to the right until it has the form
#1+#0+(#S)

∗
. Therefore, this node belongs to a chain 2− 1− 1− . . .−

1− 22
m·(m+1) of length m+ 2 as both x and y have length 2m(m+ 1).

• x = y but y is not of the form #binm(0)#binm(1)# . . .#binm(2m−1). In
this case the node belongs to an infinite chain of the form 2− 1− 1− . . . .
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• x 6= y. In this case, the node either belongs to an infinite chain of the
form 2n− 1− 1− . . . , for some n ≥ 2, or of the form . . .− 1− 1− 1− . . . ,
depending on whether condition (1c) is satisfied or not after shifting x to
the right until it has the form #1+#0+(#S)

∗
.

In the remaining part of the proof we will show that the prime model does
not have an automatic presentation. So, assume by way of contradiction that
there is an automatic presentation of the prime model. Then every equivalence
class consisting of 2 members belongs to a chain of the form 2 − 1 − 1 − . . . −
1− 22

m·(m+1). Let c1 be a constant such that there are at most 2c1n strings of
length n in the automatic structure. Hence, the longest string in the equivalence
class of the other end of the chain has the length at least 2m(m + 1)/c1. By
the Pumping Lemma, the length difference between two connected nodes in two
adjacent finite equivalence classes is bounded by a constant c2. So, the length of
the two representatives in the first equivalence class with 2 members is at least
2m(m+1)/c1− (m+1)c2 = (m+1)(2m/c1− c2). This term grows superlinearly
in m while the set of all strings which are in an equivalence class with exactly
two members is definable by a first order formula and hence regular. This gives
a contradiction as by Lemma 3 every infinite regular set has below length n (for
sufficiently large n) at least n/c3 many members for some constant c3. Therefore,
the prime model does not have an automatic presentation. Moreover, every
automatic model must have infinitely many copies of the chain 2−1−1−1− . . .
which do not exist in the prime model.

One can easily construct a structure which has uncountably many countable
models such that the prime model and the saturated model are both automatic.
An example would be to take as a prime model the structure of all chains of
the form n − 1 − 1 − . . . − 1 − 1 − m such that there are n + m nodes of
the form 1 in the chain between the nodes consisting of equivalence classes
with n and m members, respectively. Each of these finite chains exists in one
copy. The theory of this prime model also has a saturated model which in
addition to the above mentioned finite chains contains infinitely many copies of
the infinite chains of the form . . .−1−1−1− . . . and n−1−1− . . . , where n ∈
{1, 2, . . . , ω}. Between these two automatic models, there are uncountably many
other countable models as one can assign every cardinality from {0, 1, 2, . . . ,ℵ0}
to the number of occurrences of the chain n−1−1−. . . which then gives 2ℵ0 many
countable models. Clearly, most of these models are not automatic. Somehow,
it is still an open problem whether the same can be done with countably many
countable models.

Open Problem 12. Is there a complete theory with countably many countable
models such that both the prime model and the saturated model of the theory are
automatic but some other countable model of the theory is not automatic?
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6. Finitely many automatic models

Khoussainov and Nerode [14] asked in Question 3.2 whether there is for every
finite n ≥ 1 a complete theory with exactly n automatic models. The answer to
this question is affirmative. First, the answer is given for the case of n ≥ 3. Then
we will give an answer for the case of n = 2. The main difference between these
two cases is that the constructed complete theory has non-automatic countable
models, as there is no complete theory with exactly two countable models [4,
11]. It should be noted that the second result can be extended to having a
complete theory with infinitely many countable models such that exactly n of
them are automatic, where n ≥ 2. For n = 1, the Prüfer group already gives
the affirmative answer as shown in Theorem 7.

The next result is an adjustment of the well known construction of a complete
theory with exactly three countable models.

Theorem 13. There is a complete theory with exactly three countable models,
all of which are automatic.

Proof. It is well known that the theory of the dense linear order (without end-
points) enriched by additional constants x0, x1, x2, . . . ordered as x0 < x1 <
x2 < . . . has three countable models, depending on whether the above sequence
x0, x1, x2, . . . is unbounded, or has a supremum xω, or is bounded but without a
supremum. We will adopt this construction for the case of automatic structures.
As the signature has to be finite, the basic idea is to use a preordering instead of
the ordering above and to replace every element by an equivalence class in this
preordering. In this case, xn will be a representative of the least equivalence
class containing n+1 elements, and every equivalence class which is larger than
xn in the preordering contains at least n+ 1 elements.

Now we will show how to construct the smallest automatic model of the
theory. For this, let us define the lexicographic preorder ≤ based on 0 < 1 <
2 ≡ 3, where the digits 2 and 3 can be interchanged without changing the
position of the string in the preordering. For example,

01 < 211 ≡ 311 < 220.

Let the domain of the structure be 2∗3∗L, where L = 0 + 0(0 + 1)∗1, and let
the preorder be defined as above. Note that in this structure, L represents
an automatic dense linear order with the least element 0. In this domain, let
xn = 2n0; so x0 = 0, x1 = 20, x2 = 220 and so on. Then each half-open interval
Xn = {y : xn ≤ y < xn+1} consists of equivalence classes with exactly n + 1
elements, and xn represents the least equivalence class in this interval. Also the
half-open interval Xn has no greatest element, and it is densely linearly ordered
(modulo the equivalence relation).

Now let T be the theory of just constructed structure whose language consists
of one binary relation ≤ interpreted as a preordering. The following axioms are
true in T :

18



• The preordering gives, modulo its equivalence relation, a dense linear or-
dering with a least element but without a greatest one.

• For every n ∈ ω, there is an element xn such that the equivalence class of
a y contains at least n+ 1 elements if and only if xn ≤ y.

• xn is not equivalent to xn+1 for all n ∈ ω, that is, x0 < x1 < x2 < . . . .

Note that here “For every n ∈ ω, there is . . .” is not actually implemented by
quantifying over n but by a list of corresponding axioms, one for each n ∈ ω.
Similarly, the third item is also a list of axioms. Note that the xn are not
constants in the theory but defined by the first order formulas given in the
second item. To be more precise, these formulas define equivalence classes of
xn’s.

If A is a model of the above theory, then for every y ∈ A, the equivalence
class of y has infinitely many members if and only if y is an upper bound for
all xn’s. As the models considered are countable, all such equivalence classes
are countable. Furthermore, these y’s form a dense linear ordering without
a greatest element. So, any model of the theory is either isomorphic to the
one constructed above or to a model which is obtained from it by adding a
dense interval Xω consisting of infinite equivalence classes appended after all
the intervals X0, X1, X2, . . . . Note that Xω might have or not have a least
element xω, which gives two additional models of the theory.

Both additional models have automatic presentations. One can construct
the model with the least element in Xω as follows. Add a new symbol 4 to the
alphabet, and let the domain of the structure be 2∗3∗L + 4L4∗. As before, let
the strings from 2∗3∗L be ordered according to the lexicographical preordering.
Also, for every u ∈ 2∗3∗L and v ∈ 4L4∗, let u < v. On 4L4∗ the preordering is
defined as follows: for every n,m ∈ ω, let

4u4n ≤ 4v4m if and only if u ≤lex v.

Note that this definition implies that every equivalence class in 4L4∗ is count-
able. Indeed, the equivalence class of 4u is equal to 4u4∗. In this presentation,
404∗ is the least infinite equivalence class. The model without the least infinite
equivalence class would then have the domain 2∗3∗L+ 4L′4∗ and the preorder-
ing relation defined as before. Here L′ = 0(0 + 1)∗1 represents the dense linear
order without end points.

It remains to show that any two of the above models are elementary equiv-
alent. Let A and B be such models. By Theorem 6, it suffices to show that
A ≈k B for all k ∈ ω. Let A and B denote the domains of A and B, respectively,
and let ≤ denote the preordering in both of these models. Furthermore, let Ã
and B̃ be the equivalence classes of A and B induced by the preordering ≤. Let
ã0, ã1, . . . , ãk−1 and b̃0, b̃1, . . . , b̃k−1 be the least equivalence classes in A and B
with 1, 2, . . . , k elements, respectively. As both sets Ã and B̃ are dense linear
orders with least element ã0 and b̃0, respectively, and as ã0 < ã1 < . . . < ãk−1
and b̃0 < b̃1 < . . . < b̃k−1, there is an order isomorphism f from Ã to B̃ with

19



f(ã0) = b̃0, f(ã1) = b̃1, . . ., f(ãk−1) = b̃k−1. Now the player ∃ uses the following
winning strategy in the k-round Ehrenfeucht–Fräıssé game: Whenever player ∀
picks an element a ∈ A (or b ∈ B) which has not yet been used, player ∃ picks
an element b ∈ B (or a ∈ A, respectively) which has not been used such that f
maps the equivalence class of a to that of b. Clearly the ordering between the
elements picked in A and the counterparts in B is the same, the only thing to
be verified is that player ∃ does not end up in a situation where it cannot pick a
new element as all elements in the corresponding equivalence class are already
used up. To see this, note that the following holds for equivalence classes ã and
b̃ with f(ã) = b̃:

• either ã` ≤ ã < ã`+1 and b̃` ≤ b̃ < b̃`+1 for some ` < k − 1, in which case
|ã| = |b̃| = `+ 1,

• or ãk−1 ≤ ã and b̃k−1 ≤ b̃, in which case k ≤ min{|ã|, |b̃|}.

In the first case, we have that at the beginning of each round the same amount of
elements are free in ã and b̃, respectively, and that during the round either none
or one element from each class is selected, so that this property is preserved. In
the second case, there are at least k elements in both ã and b̃. Therefore, player
∃ can always pick a new element even if player ∀ selects the same equivalence
class in every round. Hence player ∃ has a winning strategy for the Ehrenfeucht–
Fräıssé game. Therefore it follows that the two models A and B are elementary
equivalent.

One can generalise this result to show that there is a theory with n + 2
countable models all of which are automatic, where n ≥ 1. To do so, we enrich
the theory by n new predicates P1, . . . , Pn which satisfy the following conditions:

• Every x belongs to exactly one Pk, and if x and y are equivalent, then
x ∈ Pk iff y ∈ Pk, for every k = 1, . . . , n.

• For each x, y with x < y there are z1, z2, . . . , zn with x < z1 < z2 < . . . <
zn < y such that zk ∈ Pk for every k = 1, . . . , n.

• Every xn belongs to P1.

Then this theory has 2+n models. The first one doesn’t have infinite equivalence
classes. The second one has infinite classes but doesn’t have the least class
among them. The other n models contain xω (a representative from the smallest
infinite class), and they are distinguished by the number k for which xω ∈ Pk
holds.

Corollary 14. For every n ≥ 3, there is a complete theory with exactly n
countable models, all of which are automatic.

In the next theorem we will give an answer for the case of n = 2.

Theorem 15. There is a complete first order theory that has exactly two auto-
matic models.
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Proof. First, we construct two models A and A′ of the same first order theory
T that have automatic presentations. The language of the theory will consist of
one unary symbol U , two binary symbols S, R, and one ternary relation Plus.
The model A consists of:

• An infinite set UA = {ui : i ∈ ω}.

• An equivalence relation S on the elements of A that are not in UA.

• On every S-equivalence class we define the relation Plus such that it be-
comes isomorphic to the Prüfer group Z(2∞).

• For every i < j, there is a unique equivalence class Si,j and a unique
element si,j ∈ Si,j such that R(ui, si,j) and R(uj , si,j) hold, where si,j
represents an element of order 2i in the group structure of Si,j .

• There are no other S-equivalence classes apart from the Si,j for i < j
described above.

The structure A′ is obtained from A by adding one more element uω to UA and
new equivalence classes Si,ω for every i ∈ ω such that the following holds:

• UA′ = UA ∪ {uω};

• R(ui, si,ω) and R(uω, si,ω) hold for every i ∈ ω, where si,ω is an element
of order 2i in Si,ω;

• The relation Plus is extended to the new classes Si,ω so that they become
isomorphic to the Prüfer group Z(2∞).

One can think of the structure A as a graph with labelled edges, where UA =
{u0, u1, . . .} is the set of vertices of the graph, and relation R defines the edges
with labels from S-equivalence classes. More precisely, one can think that a
vertex u is connected to v by an edge labelled with n iff R(u, s) and R(v, s) hold
for an element s of order 2n. For instance, for every i < j, ui is connected to uj
by an edge with label i.

Lemma 16. The structures A and A′ are elementary equivalent.

We will use Ehrenfeucht–Fräıssé games to prove the lemma (see Theorem 6).
In the following, ord(a) denotes the order of an element a in a group, that is,
ord(a) is the least r ∈ ω such that r · a = 0.

Lemma 17. Let r > 0 be a natural number and let x0, . . . , xn−1 and y0, . . . , yn−1
be elements of the Prüfer group Z(2∞) such that for every l0, . . . , ln−1 ∈ Z with
|li| ≤ 2r2 and every a ∈ Z(2∞) with ord(a) ≤ r we have that∑

i≤n−1

lixi = a ⇐⇒
∑
i≤n−1

liyi = a.

Then
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(a) For every xn, there exists yn such that for every l0, . . . , ln ∈ Z with |li| ≤ r
and every a ∈ Z(2∞) with ord(a) ≤ r, we have that∑

i≤n−1

lixi + lnxn = a ⇐⇒
∑
i≤n−1

liyi + lnyn = a.

(b) For every yn, there exists xn such that for every l0, . . . , ln ∈ Z with |li| ≤ r
and every a ∈ Z(2∞) with ord(a) ≤ r, we have that∑

i≤n−1

lixi + lnxn = a ⇐⇒
∑
i≤n−1

liyi + lnyn = a.

Proof. We will prove part (a) since (b) will hold by symmetry. Let us fix some
xn ∈ Z(2∞) and find yn that satisfies the required properties. It is enough
to consider only the cases when ln 6= 0 since for ln = 0 the equivalences hold
trivially for any choice of yn.

First, suppose that for all l0, . . . , ln ∈ Z with |li| ≤ r and ln 6= 0 and for all
a ∈ Z(2∞) with ord(a) ≤ r we have that

∑
i≤n−1 lixi + lnxn 6= a. Note that

for any l0, . . . , ln ∈ Z with ln 6= 0 and any a ∈ Z(2∞) there are only finitely
many yn ∈ Z(2∞) satisfying the equation

∑
i≤n−1 liyi + lnyn = a. Since there

are only finitely many choices for such l0, . . . , ln and a, we can always find yn
such that

∑
i≤n−1 liyi + lnyn 6= a for all l0, . . . , ln with |li| ≤ r and ln 6= 0 and

all a with ord(a) ≤ r.
Now suppose that there are l0, . . . , ln ∈ Z with |li| ≤ r and ln 6= 0 and

a ∈ Z(2∞) with ord(a) ≤ r such that∑
i≤n−1

lixi + lnxn = a. (1)

Suppose that the values l0, . . . , ln and a in the above equation are chosen such
that pow2(ln) has the smallest possible value. Here pow2(n) denotes the largest
s such that 2s divides n. Let yn be any element of Z(2∞) satisfying∑

i≤n−1

liyi + lnyn = a. (2)

We now show that for every l′0, . . . , l
′
n with |l′i| ≤ r and every a′ with ord(a′) ≤ r,∑

i≤n−1

l′ixi + l′nxn = a′ ⇐⇒
∑
i≤n−1

l′iyi + l′nyn = a′.

Suppose that ∑
i≤n−1

l′ixi + l′nxn = a′. (3)

Again, assume that l′n 6= 0 since otherwise the implication holds trivially by
assumption. Let C = gcd(ln, l

′
n) and let kn, k′n be such that C = lnkn = l′nk

′
n.

Multiplying (1) by kn and (3) by k′n and subtracting them, we get∑
i≤n−1

(likn − l′ik′n)xi = akn − a′k′n.
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Since |likn − l′ik′n| ≤ 2r2 and ord(akn − a′k′n) ≤ r, we have by our assumption
that ∑

i≤n−1

(likn − l′ik′n)yi = akn − a′k′n.

Subtracting this from (2) multiplied by kn and taking into account that lnkn =
l′nk
′
n we obtain that

k′n

( ∑
i≤n−1

l′iyi + l′nyn

)
= k′na

′,

which in turn implies that
∑
i≤n−1 l

′
iyi+l

′
nyn = a′ since k′n must be odd number

due to the fact that we have chosen ln with the minimal possible value of
pow2(ln).

Now suppose that
∑
i≤n−1 l

′
iyi + l′nyn = a′. If l′n = 0 then there is nothing

to prove. Otherwise, let C = gcd(ln, l
′
n) and let kn, k′n be such that C = lnkn =

l′nk
′
n. By a similar argument as above we obtain that

k′n

( ∑
i≤n−1

l′ixi + l′nxn

)
= k′na

′.

If pow2(l′n) ≥ pow2(ln) then k′n must be odd and we have that
∑
i≤n−1 l

′
ixi +

l′nxn = a′. If pow2(l′n) < pow2(ln) then∑
i≤n−1

l′ixi + l′nxn = a′ + d,

where ord(d) ≤ 2pow2(k
′
n) ≤ |k′n| ≤ r. Thus ord(a′ + d) ≤ r and pow2(l′n) <

pow2(ln) which contradicts the choice of ln. Hence this case is impossible.

Lemma 18. Consider k ∈ ω and two tuples x0, . . . , xn−1, y0, . . . , yn−1 from the

Prüfer group Z(2∞) such that for every l0, . . . , ln−1 ∈ Z with |li| ≤ 22
k+1−1 and

every a ∈ Z(2∞) with ord(a) ≤ 22
k+1−1 we have that∑

i≤n−1

lixi = a ⇐⇒
∑
i≤n−1

liyi = a.

Then (Z(2∞), x0, . . . , xn−1) ≈k (Z(2∞), y0, . . . , yn−1).

Proof. The proof is by induction on k. Let k = 0; we need to show that
the tuples (x0, . . . , xn−1) and (y0, . . . , yn−1) satisfy the same unnested atomic
formulas. Each unnested atomic formula in the language of groups has the
form x = y or x + y = z. By assumption, for every l0, . . . , ln−1 ∈ Z with
|li| ≤ 2 and every a ∈ Z(2∞) with ord(a) ≤ 2, we have that

∑
i≤n−1 lixi = a iff∑

i≤n−1 liyi = a. This is clearly enough to guarantee that the same unnested
atomic formulas are true on (x0, . . . , xn−1) and (y0, . . . , yn−1).

Now assume that k > 0 and that the statement of the lemma holds for k−1.
Applying Lemma 17 for r = 22

k−1, one can show the following:

23



• For every xn, there exists yn such that for every l0, . . . , ln ∈ Z with |li| ≤
22

k−1 and every a ∈ Z(2∞) with ord(a) ≤ 22
k−1, we have that∑

i≤n−1

lixi + lnxn = a ⇐⇒
∑
i≤n−1

liyi + lnyn = a.

• For every yn, there exists xn such that for every l0, . . . , ln ∈ Z with |li| ≤
22

k−1 and every a ∈ Z(2∞) with ord(a) ≤ 22
k−1, we have that∑

i≤n−1

lixi + lnxn = a ⇐⇒
∑
i≤n−1

liyi + lnyn = a.

By inductive hypothesis, we obtain the following:

• For every xn, there exists yn such that

(Z(2∞), x0, . . . , xn−1, xn) ≈k−1 (Z(2∞), y0, . . . , yn−1, yn).

• For every yn, there exists xn such that

(Z(2∞), x0, . . . , xn−1, xn) ≈k−1 (Z(2∞), y0, . . . , yn−1, yn).

Therefore, (Z(2∞), x0, . . . , xn−1) ≈k (Z(2∞), y0, . . . , yn−1).

Corollary 19. Let c, d ∈ Z(2∞) be such that either one of the following holds

(a) ord(c) ≤ 22
k+2−2 and ord(c) = ord(d),

(b) ord(c), ord(d) > 22
k+2−2.

Then (Z(2∞), c) ≈k (Z(2∞), d).

Proof. In the first case, (Z(2∞), c) is isomorphic to (Z(2∞), d), and hence it is
obvious that (Z(2∞), c) ≈k (Z(2∞), d).

In the second case, for every l ∈ Z such that |l| ≤ 22
k+1−1 and l 6= 0, we

have that ord(lc) > 22
k+1−1 and ord(ld) > 22

k+1−1. Thus, for every l with

|l| ≤ 22
k+1−1 and every a ∈ Z(2∞) with ord(a) ≤ 22

k+1−1, we have that lc = a
iff lc = a. Lemma 18 now implies that (Z(2∞), c) ≈k (Z(2∞), d).

To describe the main strategy for the ∃ player in EFk[A,A′], we first intro-
duce two axillary functions

F [p̄, q̄] : ω → ω ∪ {ω} and F ′[p̄, q̄] : ω ∪ {ω} → ω

which depend on parameters p̄ = (p0, . . . , pt) ∈ ω and q̄ = (q0, . . . , qt) ∈ ω∪{ω}
with the property that for any i, j ≤ t,

• pi = pj iff qi = qj ,
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• pi > 2k+2 − 2 iff qi > 2k+2 − 2,

• if pi ≤ 2k+2 − 2 then pi = qi.

Let n ∈ ω; define F [p̄, q̄](n) as follows:

• if n = pi for some i ≤ t, then let F [p̄, q̄](n) = qi;

• otherwise, consider the following two cases:

(a) if n ≤ 2k+2 − 2 then let F [p̄, q̄](n) = n;

(b) if n > 2k+2 − 2 then let F [p̄, q̄](n) be the least m > 2k+2 − 2 such
that m /∈ {q0, . . . , qt}.

The value of F ′[p̄, q̄](n) is defined in a similar way by replacing all pi’s with qi’s
and vice versa in the definition above.

For every x from A or A′, define R0(x) and R1(x) as follows:

• If x ∈ U , that is, x = ui for some i ∈ ω∪{ω}, then let R0(x) = R1(x) = i.

• If x ∈ Si,j for some i, j ∈ ω ∪ {ω}, then let R0(x) = i and R1(x) = j.

Let us fix k ∈ ω and show that A ≈k A′, that is, player ∃ has a winning
strategy for the game EFk[A,A′]. Suppose that the players have already made
n < k steps in the game, and the tuples x̄ = (x0, . . . , xn−1) ∈ A and ȳ =
(y0, . . . , yn−1) ∈ A′ have been chosen by the players such that the following
conditions are satisfied:

(1) The tuples x̄ and ȳ satisfy the same unnested atomic formulas, that is, for
every s, t, r ≤ n− 1

• xs = xt iff ys = yt;

• UA(xs) iff UA
′
(ys);

• RA(xs, xt) iff RA
′
(ys, yt);

• SA(xs, xt) iff SA
′
(ys, yt);

• if xs, xt, xr are in the same S-equivalence class, then PlusA(xs, xt, xr)

iff PlusA
′
(ys, yt, yr).

(2) For every s, t ≤ n− 1,

|{R0(xs), R1(xs)} ∩ {R0(xt), R1(xt)}| =
|{R0(ys), R1(ys)} ∩ {R0(yt), R1(yt)}|.

(3) For every s ≤ n− 1 and e ∈ {0, 1}, either one of the following holds:

• Re(xs) ≤ 2k+2 − 2 and Re(xs) = Re(ys);

• Re(xs), Re(ys) > 2k+2 − 2.
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(4) For every s ≤ n − 1 such that xs ∈ SAi0,i1 and ys ∈ SA
′

j0,j1
for some

i0, i1, j0, j1 ∈ ω ∪ {ω}, the following condition holds: Let ū and v̄ be the
subsequences of x̄ and ȳ consisting of elements belonging to SAi0,i1 and SA

′

j0,j1
,

respectively. Then the play (ū, v̄) agrees with a winning strategy for player
∃ in the game

EFk[(SAi0,i1 , s
A
i0,i1), (SA

′

j0,j1 , s
A′
j0,j1)].

Such a winning strategy exists due to condition (3) above and Corollary 19.

Note that these conditions hold trivially at the beginning of the play.

We will show that for every xn ∈ A there exists yn ∈ A′ and for every yn ∈ A′
there exists xn ∈ A such that the tuples (x0, . . . , xn−1, xn) and (y0, . . . , yn−1, yn)
satisfy the conditions above (with n − 1 being replaced by n). This is enough
to ensure that after k many steps player ∃ wins the game.

Suppose that player ∀ have chosen yn ∈ A′ (the other case is similar). Let

p̄ = (R0(x0), R1(x0), . . . , R0(xn−1), R1(xn−1))

and
q̄ = (R0(y0), R1(y0), . . . , R0(yn−1), R1(yn−1)).

Consider the following possibilities.

(1) Suppose yn ∈ UA
′
, that is, yn = uA

′

j , for some j ∈ ω ∪{ω}. In this case, let

xn to be equal to uAi , where i = F ′[p̄, q̄](j).

(2) Suppose yn ∈ SA
′

j0,j1
for some j0, j1 ∈ ω ∪ {ω}. Define

i0 = F ′[p̄, q̄](j0) and i1 = F ′[(p̄, i0), (q̄, j0)](j1).

If i0 happens to be greater than i1, then swap their values to ensure that
i0 < i1. Consider the game

EFk[(SAi0,i1 , s
A
i0,i1), (SA

′

j0,j1 , s
A′
j0,j1)].

Let ū and v̄ be the subsequences of x̄ and ȳ consisting of elements belonging
to SAi0,i1 and SA

′

j0,j1
, respectively. By assumption, the play (ū, v̄) agrees with

a winning strategy for player ∃ for that game. In this case, let player ∃
choose xn ∈ SAi0,i1 according to his winning strategy taking into account
the moves (ū, v̄) that have been made earlier. Since by assumption n < k,
player ∃ can always make such a move.

This completes the description of step n of the play. It can be verified that
whenever all conditions hold at the beginning of step n then they also hold at
the end of step n. Therefore, by induction, the player ∃ has a winning strategy
and the two models A and A′ are elementary equivalent.

Let T be the first order theory of either A or A′. The following lemma
completes the proof of Theorem 15.
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Lemma 20. The theory T has only two automatic models, namely A and A′.

Proof. First, let us show that the structures A and A′ are automatic and then
prove that T does not have any other automatic models other than these two.
We construct an automatic presentation for the larger model A′ since the pre-
sentation for A is similar.

Define the following automatic presentation of Z(2∞). Let the alphabet
be {0, 1} and let the string a0 . . . an represent an element 0.a0 . . . an ∈ Z(2∞)
written in binary form. Thus we assume that the domain of this presentation
consists of all strings ending in 1 apart from the string 0, which represents the
neutral element of Z(2∞).

Let the alphabet an automatic presentation of A′ be Σ = {0, 1,#}3. For
every i ∈ ω ∪ {ω}, define αi as follows

αi =

{
0i+1 if i < ω;

1 if i = ω.

Let the elements of U = {ui}i∈ω∪{ω} be represented as Conv(αi, ε, ε), where
ε is the empty string. Let the elements from an equivalence class Si,j , for
i, j ∈ ω ∪ {ω}, be represented as Conv(αi, αj , p), where p is a string from the
domain of Z(2∞). In this case, the binary relation R consists of the pairs(

Conv(αk, ε, ε), Conv(αi, αj , 0
i−11)

)
,

where i, j ∈ ω ∪ {ω}, i < j and k ∈ {i, j}. It is not hard to verify that in the
presentation defined above the domain of A′ and the predicates U , S and R can
be recognised by finite automata.

We now show that T does not have any other automatic model apart from
A and A′. Consider the following list of sentences from the theory T :

(1) S is an equivalence relation on the complement of U .

(2) Every equivalence class of S equipped with the predicate Plus has the same
first order theory as (Z(2∞),+), with Plus(x, y, z) being interpreted as x+
y = z.

(3) For every u and s, if R(u, s) holds then u ∈ U , s /∈ U and s is the unique
element from its equivalence class with the property that there are exactly
two elements u, v ∈ U for which R(u, s) and R(v, s) hold.

(4) For every u, v ∈ U such that u 6= v, there exists s for which R(u, s) and
R(v, s) hold.

(5) For every i < ω, there are u0, . . . , ui−1 ∈ U and a unique ui ∈ U such that
u0, . . . , ui are pairwise different and

∀v ∈ U − {u0, . . . , ui−1} ∃s (R(v, s) ∧R(ui, s) ∧ ord(s) = 2i).
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(6) The ui defined above is also unique with the property that there are two
different u, v ∈ U and s, t /∈ U such that ord(s) = ord(t) = 2i and R(ui, s)∧
R(u, s) and R(ui, t) ∧R(v, t) hold.

Let B be an automatic model of T . Then every S-equivalence class in B must be
isomorphic to Z(2∞) since otherwise Theorem 7 and (2) above would imply that
B is not automatic. By definition, the domain of B contains a set U of vertices
that are R-connected with each other via elements from S-equivalence classes.
By (5), U contains an infinite sequence {ui}i∈ω such that for every i 6= j, we
have that ui and uj are connected via an element s of order 2min{i,j}.

If there are no other elements in U apart from ui’s, then B ∼= A. If U
contains just one extra element, say uω, then B ∼= A′. If U contains at least two
extra elements, say uω and u′ω, then they must be connected with each other
via some element s /∈ U . Note that s has a finite order since every S-equivalence
class is isomorphic to Z(2∞). Let ord(s) = 2i. Then there are three elements in
B that satisfy property (6) above, namely ui, uω and u′ω. Therefore, this case
is impossible, and B can only be isomorphic either to A or to A′.

Open Problem 21. Note that the theory constructed in the last theorem has un-
countably many countable models. We leave it as an open question whether there
exists a complete theory with countably many (or even finitely many) countable
models such that only two of them are automatic.

7. Conclusion

The present paper answers several open problems posed by Khoussainov and
Nerode on the way to establish an automatic model theory, which would be a
counterpart of the well-developed recursive model theory. While previous work
mainly asked which structures are automatic or determined the complexity of
the isomorphism problem for certain types of automatic structures, the approach
of Khoussainov and Nerode seeks more to locate the automatic models of a
theory inside the collection of its countable models. So they asked natural
questions like the following: How many automatic models can a complete first
order theory have? If a theory with an automatic model has a prime model
and a saturated model, are these necessarily automatic? While most questions
could be answered, some natural questions remain open: Does the result on the
existence of an ℵ1-categorical but not ℵ0-categorical theory whose all countable
models except the prime one are automatic depend on any complexity-theoretic
assumption? This result is proven under the assumption LOGSPACE = P
and could be proven under a bit weaker assumption, but can we get rid of it
completely? Furthermore, if a theory has countably many countable models and
both the prime and the saturated models are automatic, are then all countable
models of the theory automatic? Is there a theory with only countably many (or
finitely many) countable models such that exactly two of them have automatic
presentations?
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[15] Bakhadyr Khoussainov, André Nies, Sasha Rubin and Frank Stephan. Au-
tomatic structures: richness and limitations. 19th IEEE Symposium on
Logic in Computer Science, LICS 2004, 14-17 July 2004, Turku, Finland,
Proceedings; IEEE Computer Society, pages 44–53, 2004.

29
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[20] André Nies. Describing groups. Bulletin of Symbolic Logic, 13(3):305–339,
2007.
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