
Uncountable Automatic Classes and Learning

Sanjay Jain∗, Qinglong Luo†, Pavel Semukhin‡ and Frank Stephan§

Abstract

In this paper we consider uncountable classes recognizable by ω-automata and investi-
gate suitable learning paradigms for them. In particular, the counterparts of explana-
tory, vacillatory and behaviourally correct learning are introduced for this setting. Here
the learner reads in parallel the data of a text for a language L from the class plus an
ω-index α and outputs a sequence of ω-automata such that all but finitely many of these
ω-automata accept the index α if and only if α is an index for L.

It is shown that any class is behaviourally correct learnable if and only if it satisfies
Angluin’s tell-tale condition. For explanatory learning, such a result needs that a suit-
able indexing of the class is chosen. On the one hand, every class satisfying Angluin’s
tell-tale condition is vacillatorily learnable in every indexing; on the other hand, there
is a fixed class such that the level of the class in the hierarchy of vacillatory learning
depends on the indexing of the class chosen.

We also consider a notion of blind learning. On the one hand, a class is blind ex-
planatorily (vacillatorily) learnable if and only if it satisfies Angluin’s tell-tale condition
and is countable; on the other hand, for behaviourally correct learning, there is no
difference between the blind and non-blind version.

This work establishes a bridge between the theory of ω-automata and inductive
inference (learning theory).

1 Introduction

Usually, in learning theory one considers classes consisting of countably many languages
from some countable domain. A typical example here is the class of all recursive subsets of
{0, 1, 2}∗, where {0, 1, 2}∗ is the set of all finite strings over the alphabet {0, 1, 2}. However,
each countably infinite domain has uncountably many subsets, and thus we miss out many
potential targets when we consider only countable classes. The main goal of this paper is to

∗Department of Computer Science, National University of Singapore, Singapore 117417, Republic of Sin-
gapore, sanjay@comp.nus.edu.sg. Supported in part by NUS grant numbers R252-000-308-112 and C-252-
000-087-001.

†Department of Computer Science, National University of Singapore, Singapore 117417, Republic of Sin-
gapore, luoqingl@comp.nus.edu.sg.

‡Department of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore,
pavels@nus.edu.sg. Supported by NUS grant R146-000-114-112.

§Departments of Mathematics and Computer Science, National University of Singapore, Singapore 119076,
Republic of Singapore, fstephan@comp.nus.edu.sg. Supported in part by NUS grants R146-000-114-112 and
R252-000-308-112.

1

find a generalization of the classical model of learning which would be suitable for working
with uncountable classes of languages. The classes which we consider can be uncountable,
but they still have some structure, namely, they are recognizable by Büchi automata. We
will investigate, how the classical notions of learnability have to be adjusted in this setting
in order to obtain meaningful results. To explain our approach in more detail, we first give
an overview of the classical model of inductive inference which is the underlying model of
learning in our paper.

Consider a class L = {Li}i∈I , where each language Li is a subset of Σ∗, the set of finite
strings over an alphabet Σ. In a classical model of learning, which was introduced and studied
by Gold [9], a learner M receives a sequence of all the strings from a given language L ∈ L,
possibly with repetitions. Such a sequence is called a text for the language. After reading
the first n strings from the texts, the learner outputs a hypothesis in about what the target
language might be. The learner succeeds if it eventually converges to an index that correctly
describes the language to be learnt, that is, if limn in = i and L = Li. If the learner succeeds
on all texts for all languages from a class, then we say that it learns this class. This is
the notion of explanatory learning (Ex). Such a model became the standard one for the
learnability of countable classes. Besides Ex, several other paradigms for learning have been
considered like, e.g., behaviourally correct (BC) learning [3], vacillatory or finite explanatory
(FEx) learning [8], partial identification (Part) [13] and so on.

The indices that the learner outputs are usually finite objects like natural numbers or
finite strings. For example, Angluin [1] initiated the research on learnability of uniformly
recursive families indexed by natural numbers, and, in recent work, Jain, Luo and Stephan [10]
considered automatic indexings by finite strings in place of uniformly recursive indexings. The
collection of such finite indices is countable, and hence we can talk only about countable classes
of languages. On the other hand, the collection of all the subsets of Σ∗ is uncountable, and
it looks too restrictive to consider only countable classes. Because of this, it is interesting to
find a generalization of the classical model which will allow us to study the learnability of
uncountable classes.

Below is an informal description of the learning model that we investigate in this paper.
First, since we are going to work with uncountable classes, we need uncountably many indices
to index a class to be learnt. For this purpose we will use infinite strings (or ω-strings) over a
finite alphabet. Next, we want such indexings to be effective or “computable” in some sense.
There are computing machines, called Büchi automata or ω-automata, which can be used
naturally for processing ω-strings. They were first introduced by Büchi [6, 7] to prove the
decidability of S1S, the monadic second-order theory of the natural numbers with successor
function S(x) = x+1. Because of this and other decidability results, the theory of ω-automata
has become a popular area of research in theoretical computer science (see, e.g., [14]). Taking
these points into account, we will assume that a class to be learnt has an indexing by ω-strings
which is Büchi recognizable.

The main difference between our model of learning and the classical one is that the learner
does not output hypotheses as it processes a text. The reason for this is that it is not possible
to output an arbitrary infinite string in a finite amount of time. Instead, in our model, the
learner is presented with an index α and a text T , and it must decide whether T is a text for
the set with the index α. During its work, the learner outputs an infinite sequence of Büchi
automata {An}n∈ω (where ω denotes the set of natural numbers) such that An accepts the

2

index α if and only if the learner at stage n thinks that T is indeed a text for the set with
the index α. The goal of the learner is to converge in the limit to the right answer.

As one can see from the description above, the outputs of a learner take the form of
ω-automata instead of just binary answers ‘yes’ or ‘no’. We chose such definition due to the
fact that a learner can read only a finite part of an infinite index in a finite amount of time.
If we required that a learner outputs its ‘yes’ or ‘no’ answer based on such finite information,
then our model would become too restrictive. On the other hand, a Büchi automaton allows
a learner to encode additional infinitary conditions that have to be verified before the index
will be accepted or rejected, for example, if the index contains infinitely many 1’s or not. This
approach makes a learner more powerful, and more nontrivial classes become learnable.

Probably the most interesting property of our model is that for many learning criteria, the
learnability coincides with Angluin’s classical tell-tale condition for the countable case (see
the table at the end of this section). Angluin’s condition states that for every set L from a
class L, there is a finite subset DL ⊆ L such that for any other L′ ∈ L with DL ⊆ L′ ⊆ L we
have that L′ = L. It is also well-known that in the classical case, every r.e. class is learnable
according to the criterion of partial identification [13]. We will show that in our model every
ω-automatic class can be learnt according to this criterion.

The results described above suggest that the notions defined in this paper match the
intuition of learnability, and that our model is a natural one suitable for investigating the
learnability of uncountable classes of languages.

We also consider a notion of blind learning. A learner is called blind if it does not see
an index presented to it. Such a learner can see only an input text, but nevertheless it must
decide whether the index and the text represent the same language. It turns out that for the
criterion of behaviourally correct learning, the blind learners are as powerful as the non-blind
ones, but for the other learning criteria this notion becomes more restrictive.

The reader can find all formal definitions of the notions discussed here and some necessary
preliminaries in the next section. We summarize our results:

Criterion Condition Indexing Theorems
Ex ATTC New 4.1, 5.3
FEx ATTC Original 3.1, 5.3
BC ATTC Original 5.3
Part Any class Original 6.1
BlindBC ATTC Original 5.1, 5.3
BlindEx ATTC & Countable Original 5.2
BlindFEx ATTC & Countable Original 5.2
BlindPart Countable Original 6.2

In this table, the first column lists the learning criteria that we studied. Here, Ex stands
for explanatory learning, BC for behaviourally correct learning, FEx for finite explanatory
or vacillatory learning, and Part for partial identification. A prefix Blind denotes the blind
version of the corresponding criterion. The second column describes equivalent conditions
that an automatic class must satisfy for being learnable under the given learning criterion of
the first column. Here, ATTC means that the class must satisfy Angluin’s tell-tale condition,
and Countable means that the class must be countable. The next column indicates whether

3

the learner uses the original indexing of the class or a new one. The last column gives a
reference to a theorem/corollary where the result is proved.

2 Preliminaries

An ω-automaton is essentially a finite automaton operating on ω-strings with an infinitary
acceptance condition which decides — depending upon the infinitely often visited nodes —
which ω-strings are accepted and which are rejected. For a general background on the theory
of finite automata the reader is referred to [11].

Definition 2.1 (Büchi [6, 7]). A nondeterministic ω-automaton is a tuple A = (S, Σ, I, T),
where

(a) S is a finite set of states,
(b) Σ is a finite alphabet,
(c) I ⊆ S is the set of initial states, and
(d) T is the transition function T : S × Σ → P(S), where P(S) is the power set of S.

An automaton A is deterministic if and only if |I| = 1, and for all s ∈ S and a ∈ Σ,
|T (s, a)| = 1.

An ω-string over an alphabet Σ is a function α : ω → Σ, where ω is the set of natural
numbers. We often identify an ω-string with the infinite sequence α = α0α1α2 . . . , where
αi = α(i). Let Σ∗ and Σω denote the set of all finite strings and the set of all ω-strings over
the alphabet Σ, respectively.

We always assume that the elements of an alphabet Σ are linearly ordered. This order
can be extended to the length-lexicographical order ≤llex on Σ∗; here x ≤llex y if and only if
|x| < |y| or |x| = |y| ∧ x ≤lex y, where ≤lex is the standard lexicographical order.

Given an ω-automaton A = (S, Σ, I, T) and an ω-string α, a run of A on α is an ω-string

r = s0 . . . snsn+1 . . . ∈ Sω

such that s0 ∈ I and for all n, sn+1 ∈ T (sn, αn). Note that if an ω-automaton A is determin-
istic, then for every α, there is a unique run of A on α. In this case we will use the notation
StA(α, k) to denote the state of A after it has read the first k symbols of α.

Definition 2.2. Let Inf (r) denote the infinity set of a run r, that is,

Inf (r) = {s ∈ S : s appears infinitely often in r}.

We define the following accepting conditions for the run r:

1) Büchi condition is determined by a subset F ⊆ S. The run r is accepting if and only if
Inf (r) ∩ F 6= ∅.

2) Muller condition is determined by a subset F ⊆ P(S). The run r is accepting if and only
if Inf (r) ∈ F .

4

3) Rabin condition is determined by Ω = {(F1, G1), . . . , (Fh, Gh)}, where all Fi and Gi are
subsets of S. The run r is accepting if and only if there is an i such that 1 ≤ i ≤ h,
Inf (r) ∩ Fi 6= ∅ and Inf (r) ∩ Gi = ∅.

It can be shown that all these acceptance conditions are equivalent in the sense that if a
language is accepted by an automaton according to one of the above acceptance criteria, it
can also be accepted by an automaton according to any other of these criteria (see [11]).
Therefore, we assume that we have fixed one of the acceptance conditions defined above and
say that an ω-automaton A accepts a string α if and only if there is a run of A on α that
satisfies this condition. Let L(A) denote the set of strings accepted by an automaton A
according to the chosen acceptance condition.

Furthermore, every ω-automaton is equivalent to a deterministic one with Muller accep-
tance condition (again, see [11]). Thus, if not explicitly stated otherwise, by an automaton
we will always mean a deterministic ω-automaton with Muller acceptance condition.

Definition 2.3 (Khoussainov and Nerode [11, 12]). 1) A finite automaton is a tuple A =
(S, Σ, I, T, F), where S, Σ, I and T are the same as in the definition of an ω-automaton,
and F ⊆ S is the set of final states.

2) For a finite string w = a0 . . . an−1 ∈ Σ∗, a run of A on w is a sequence s0 . . . sn ∈ S∗ such
that s0 ∈ I and si+1 ∈ T (si, ai) for all i ≤ n−1. The run is accepting if and only if sn ∈ F .
The string w = a0 . . . an−1 is accepted by A if and only if there is an accepting run of A
on w.

Definition 2.4. 1) A convolution of k ω-strings α1, . . . , αk ∈ Σω is an ω-string ⊗(α1, . . . , αk)
over the alphabet Σk defined as

⊗(α1, . . . , αk)(n) = (α1(n), . . . , αk(n)) for every n ∈ ω.

2) A convolution of k finite strings w1, . . . , wk ∈ Σ∗ is a string ⊗(w1, . . . , wk) of length l =
max{|w1|, . . . , |wk|} over the alphabet (Σ ∪ {#})k, where # is a new padding symbol,
defined as

⊗(w1, . . . , wk)(n) = (v1(n), . . . , vk(n)) for every n < l,

where for each i = 1, . . . , k and n < l,

vi(n) =

{

wi(n) if n < |wi|

otherwise.

3) Correspondingly one defines the convolution of finite strings and ω-strings: one identifies
each finite string σ with the ω-string σ#ω and forms then the corresponding convolution
of ω-strings.

4) A convolution of k-ary relation R on finite or ω-strings is defined as

⊗R = {⊗(x1, . . . , xk) : (x1, . . . , xk) ∈ R}.

5

5) A relation R on finite or ω-strings is automatic if and only if its convolution ⊗R is recog-
nizable by a finite or an ω-automaton, respectively.

For the ease of notation, we often just write (x, y) instead of ⊗(x, y) and so on. It is well-known
that the automatic relations are closed under union, intersection, projection and complemen-
tation. In general, the following theorem holds, which we will often use in this paper.

Theorem 2.5 (Blumensath and Grädel [4, 5]). If a relation R on ω-strings is definable from
other automatic relations R1, . . . , Rk by a first-order formula, then R itself is automatic.

Remark 2.6. 1) If we use additional parameters in a first-order definition of a relation R,
then these parameters must be ultimately periodic strings.

2) Furthermore, in a definition of a relation R we can use first-order variables of two sorts,
namely, one ranging over ω-strings and one ranging over finite strings. We can do this
because every finite string v can be identified with its ω-expansion v#ω, and the set of all
ω-expansions of the finite strings over alphabet Σ is automatic.

A class L is a collection of sets of finite strings over some alphabet Γ, i.e., L ⊆ P(Γ∗). An
indexing for a class L is an onto mapping f : I → L, where I is the set of indices. We will
often denote the indexing as {Lα}α∈I , where Lα = f(α).

An indexing {Lα}α∈I is automatic if and only if I is an automatic subset of Σω for some
alphabet Σ and the relation {(x, α) : x ∈ Lα} is automatic. A class is automatic if and only
if it has an automatic indexing. If it is not stated otherwise, all indexings and all classes
considered herein are assumed to be automatic.

Remark 2.7. According to the definition, an automatic class always comes with an automatic
indexing. However we will often say just an “automatic class” instead of an “automatic class
with a given automatic indexing.” Such abbreviation makes sense because many results of
the paper do not depend on the particular choice of an indexing for a class. This can be
seen from the table in the introduction section that summarizes the main results. The fact
that a learner uses the original indexing of the class actually means that the choice of such
indexing is not important. In some cases, where an indexing is important, it will be mentioned
explicitly.

Example 2.8. Here are some examples of automatic classes:
1) the class of all open intervals I = {q ∈ D : p < q < r} of dyadic rationals where the

border points p and r can be any real numbers;
2) the class of such intervals where r − p is equal to 1 or 2 or 3;
3) the class of all sets of finite strings which are given as the prefixes of an infinite sequence;
4) the class of all sets of natural numbers in unary coding.

On the other hand, the class of all finite sets of strings over the alphabet {0, 1} is not auto-
matic.

A text is an ω-string T of the form

T = u0, u1, u2, . . . ,

6

such that each ui is either equal to the pause symbol # or belongs to Γ∗, where Γ is some
alphabet. Note that the comma “ , ” is also part of the text and servers as a delimiter for
ui’s. We call ui the i-th input of the text. The content of a text T is the set content(T) =
{ui : ui 6= #}. If content(T) is equal to a set L ⊆ Γ∗, then we say that T is a text for
L. A canonical text for an infinite set L is the listing of all the strings from L in length-
lexicographical order. A canonical text for a finite set L starts with the listing of all the
strings from L in length-lexicographical order, and ends in #ω.

Definition 2.9. Let Γ and Σ be alphabets for sets and indices, respectively. A learner is a
Turing machine M that has the following:

1) two read-only tapes: one for an ω-string from Σω representing an index and one for a
text for a set L ⊆ Γ∗;

2) one write-only output tape on which M writes a sequence of automata (in a suitable
coding);

3) one read-write working tape.

Let Ind(M, α, T, s) and Txt(M, α, T, s) denote the number of symbols read in the index and
text tapes by learner M up to step s when it processes an index α and a text T . Without
loss of generality, we will assume that

lim
s→∞

Ind(M, α, T, s) = lim
s→∞

Txt(M, α, T, s) = ∞

for any α and T . By M(α, T, k) we denote the k-th automaton output by learner M when
processing an index α and a text T . Without loss of generality, for the learning criteria
considered in this paper, we assume that M(α, T, k) is defined for all k.

Definition 2.10 (Based on [3, 8, 9, 13]). Let a class L = {Lα}α∈I (together with its indexing)
and a learner M be given. We say that

1) M BC-learns L if and only if for any index α ∈ I and any text T with content(T) ∈ L,
there exists n such that for every m ≥ n,

M(α, T, m) accepts α if and only if Lα = content(T).

2) M Ex-learns L if and only if for any index α ∈ I and any text T with content(T) ∈ L,
there exists n such that for every m ≥ n, M(α, T, m) = M(α, T, n) and

M(α, T, m) accepts α if and only if Lα = content(T).

3) M FEx-learns L if and only if M BC-learns L and for any α ∈ I and any text T with
content(T) ∈ L, the set {M(α, T, n) : n ∈ ω} is finite.

4) M FExk-learns L if and only if M BC-learns L and for any α ∈ I and any text T with
content(T) ∈ L, there exists n such that

|{M(α, T, m) : m ≥ n}| ≤ k.

7

5) M Part-learns L if and only if for any α ∈ I and any T with content(T) ∈ L, there exists
a unique automaton A such that for infinitely many m, M(α, T, m) = A, and for this
unique A,

A accepts α if and only if Lα = content(T).

Here the abbreviations BC, Ex, FEx and Part stand for ‘behaviourally correct’, ‘explana-
tory’, ‘finite explanatory’ and ‘partial identification’, respectively; ‘finite explanatory learning’
is also called ‘vacillatory learning’. We will also use the notations BC, Ex, FEx, FExk and
Part to denote the collection of classes (with corresponding indexings) that are BC-, Ex-,
FEx-, FExk- and Part-learnable, respectively.

Definition 2.11. A learner is called blind if it does not see the tape which contains an index.
The classes that are blind BC-, Ex-, etc. learnable are denoted as BlindBC, BlindEx, etc.,
respectively.

Definition 2.12 (Angluin [1]). We say that a class L satisfies Angluin’s tell-tale condition if
and only if for every L ∈ L there is a finite DL ⊆ L such that for every L′ ∈ L, if DL ⊆ L′ ⊆ L
then L′ = L. Such DL is called a tell-tale set for L.

Using techniques similar to those that were introduced in [1], it can be shown that

Fact 2.13. If a class L is BC-learnable, then L satisfies Angluin’s tell-tale condition.

The converse will also be shown to be true, hence for automatic classes one can equate “L
is learnable” with “L satisfies Angluin’s tell-tale condition”. Note that the second and the
third class given in Example 2.8 satisfy Angluin’s tell-tale condition.

3 Vacillatory Learning

In the following it is shown that every learnable class can even be vacillatorily learnt and
that the corresponding FEx-learner uses overall on all possible inputs only a fixed number of
automata.

Theorem 3.1. Let {Lα}α∈I be a class that satisfies Angluin’s tell-tale condition. Then there
are finitely many automata A1, . . . , Ac and an FEx-learner M for the class {Lα}α∈I with the
property that for any α ∈ I and any text T for a set from {Lα}α∈I , the learner M oscillates
only between some of the automata A1, . . . , Ac on α and T .

Proof. Let M be a deterministic automaton recognizing the relation {(x, α) : x ∈ Lα}, and
let N be a deterministic automaton recognizing

{ (x, α) : {y ∈ Lα : y ≤llex x} is a tell-tale for Lα }.

Such an N exists since the relation is first-order definable from ‘x ∈ Lα’ and ≤llex by the
formula:

N accepts (x, α) ⇐⇒ ∀α′ ∈ I
(

if ∀y ((y ∈ Lα & y ≤llex x) → y ∈ Lα′) &

∀y (y ∈ Lα′ → y ∈ Lα), then ∀y (y ∈ Lα′ ↔ y ∈ Lα)
)

.

8

For each α ∈ I, consider an equivalence relation ≡M,α defined as

x ≡M,α y ⇐⇒ there is a t > max{|x|, |y|} such that

StM(⊗(x, α), t) = StM(⊗(y, α), t).

An equivalence relation ≡N,α is defined in a similar way.
Note that the number of the equivalence classes of ≡M,α and ≡N,α are bounded by the

number of states of M and N , respectively. Also, for every x, y, if x ≡M,α y then x ∈ Lα ↔
y ∈ Lα. Therefore, Lα is the union of finitely many equivalence classes of ≡M,α.

Let m and n be the number of states of M and N , respectively. Consider the set of all
finite tables U = {Ui,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} of size m × n such that each Ui,j is either
equal to a subset of {1, . . . , i} or to a special symbol Reject. Note that the number of such
tables is finite.

With each such table U we will associate an automaton A as described below. The
algorithm for learning {Lα}α∈I is now roughly as follows. On every step, the learner M reads
a finite part of the input text and the index and based on this information constructs a table
U . After that M outputs the automaton associated with U .

First, we describe the construction of an automaton A for each table U . For every α ∈ I,
let m(α) and n(α) be the numbers of the equivalence classes of ≡M,α and ≡N,α, respectively.
Also, let

x1 <llex · · · <llex xm(α)

be the length-lexicographically least representatives of the equivalence classes of ≡M,α. Our
goal is to construct A such that

A accepts α ⇐⇒ Um(α),n(α) is a subset of {1, . . . , m(α)}, and Lα is equal

to the union of the ≡M,α-equivalence classes that are

represented by xi’s with i ∈ Um(α),n(α).

Let EqStM(α, x, y, z) be the relation defined as

EqStM(α, x, y, z) ⇐⇒ StM(⊗(x, α), |z|) = StM(⊗(y, α), |z|).

The relation EqStN(α, x, y, z) is defined similarly. Note that these relations are automatic.
Instead of constructing A explicitly, we will show that the language which A needs to

recognize is first-order definable from EqStM(α, x, y, z), EqStN(α, x, y, z) and the relations
recognized by M and N .

First, note that the equivalence relation x ≡M,α y can be defined by a formula:

∃z (|z| > max{|x|, |y|} and EqStM(α, x, y, z)).

Similarly one can define x ≡N,α y. The fact that ≡M,α has exactly k many equivalence classes
can be expressed by a formula:

ClNumM,k(α) = ∃x1 . . .∃xk

(

∧

1≤i<j≤k

xi 6≡M,α xj & ∀y
∨

1≤i≤k

y ≡M,α xi

)

.

9

Again, ClNumN,k(α) expresses the same fact for ≡N,α. Finally, the fact that A accepts α can
be expressed by the following first-order formula:

∨

(i,j) : Ui,j 6=Reject

(

ClNumM,i(α) & ClNumN,j(α) & ∃x1 . . .∃xi

(

x1 <llex · · · <llex xi &

∀z (z ∈ Lα ↔
∨

k∈Ui,j

z ≡M,α xk) &
∧

1≤k≤i

∀y (y <llex xk → y 6≡M,α xk)
)

)

.

We now describe the algorithm for learning the class {Lα}α∈I . We will use the notation
x ≡M,α,s y as an abbreviation of

“there is t such that s ≥ t > max{|x|, |y|} and StM(⊗(x, α), t) = StM(⊗(y, α), t).”

As before, let m and n be the numbers of states of automata M and N , respectively. At step
s, M computes ≤llex least representatives of the equivalence classes of ≡M,α,s and ≡N,α,s on
the strings with length shorter than s. In other words, it computes x1, . . . , xp and y1, . . . , yq

such that

a) x1 is the empty string,
b) xk+1 is the ≤llex least x >llex xk such that |x| ≤ s and x 6≡M,α,s xi for all i ≤ k. If

such x does not exists then the process stops.

The sequence y1, . . . , yq is computed in a similar way.
Next, M constructs a table U of size m× n. For every i and j, the value of Ui,j is defined

as follows. If i > p or j > q, then let Ui,j = Reject . Otherwise, let τs be the initial segment
of the input text T consisting of the first s strings in the text T . Check if the following two
conditions are satisfied:

1) for every x, x′ ≤llex yj, if x ≡M,α,s x′, then x ∈ content(τs) if and only if x′ ∈
content(τs),

2) for every k ≤ i and every y, if y ∈ content(τs) and y ≡M,α,s xk, then xk ∈ content(τs).

If yes, then let Ui,j = {k : k ≤ i and xk ∈ content(τs)}. Otherwise, let Ui,j = Reject . After
U is constructed, M outputs an automaton A associated with U as described above. As
the number of different possible U is finite, the number of distinct corresponding automata
output by M is finite.

Recall that M(α, T, s) is the automaton output by learner M at step s when processing
the index α and the text T . To prove that the algorithm is correct we need to show that for
every α ∈ I and every text T such that content(T) ∈ {Lβ}β∈I ,

a) if content(T) = Lα then for almost all s, M(α, T, s) accepts α,
b) if content(T) 6= Lα then for almost all s, M(α, T, s) rejects α.

Recall that m(α) and n(α) are the numbers of the equivalence classes of ≡M,α and ≡N,α,
respectively. Note that there is a step s0 after which the values x1 <llex · · · <llex xm(α) and
y1 <llex · · · <llex yn(α) computed by M will always be equal to the ≤llex least representatives
of the equivalence classes of ≡M,α and ≡N,α, respectively.

Suppose that content(T) = Lα. Hence, there is s1 ≥ s0 such that for every s ≥ s1 the
following conditions are satisfied:

10

1) for every k ≤ m(α), xk ∈ content(τs) if and only if xk ∈ content(T),
2) for every x, x′ ≤llex yn(α), if x ≡M,α,s x′, then x ∈ content(τs) if and only if x′ ∈

content(τs),
3) for every k ≤ m(α) and every y, if y ∈ content(τs) and y ≡M,α,s xk, then xk ∈

content(τs).

The last two conditions are satisfied since content(T) = Lα is the union of finitely many ≡M,α

equivalence classes. Therefore, on every step s ≥ s1, the learner M constructs a table U such
that Um(α),n(α) = {k : k ≤ m(α) and xk ∈ content(T)}. By our construction of the automaton
A associated with U , A accepts α if Lα = {y : y ≡M,α xk for some xk ∈ content(T)}. But
since content(T) = Lα, this condition is satisfied.

Now suppose that content(T) 6= Lα. Note that for every s ≥ s0, yn(α) computed by M
at step s has the property that Dα = {x ∈ Lα : x ≤llex yn(α)} is a tell-tale set for Lα. This
follows from the definition of the automaton N and the fact that yn(α) is the ≤llex largest
among the representatives of the ≡N,α equivalence classes.

First, consider the case when Dα * content(T), that is, there is x ∈ Lα, x ≤llex yn(α)

but x /∈ content(T). Let s1 ≥ s0 be such that x ≡M,α,s1
xk for some k ≤ m(α). Note

that xk ≤llex x since xk is the minimal representative in its equivalence class. If for some
s2 ≥ s1, xk ∈ content(τs2

), then from this step on Um(α),n(α) will be equal to Reject because
of the Condition 1) in the definition of Ui,j . Hence M(α, T, s) will reject α for all s ≥ s2.
If xk /∈ content(T), then for all s ≥ s1, M(α, T, s) will reject α either due to the fact that
Um(α),n(α) = Reject at step s, or because k /∈ Um(α),n(α) while it should be in Um(α),n(α) since
both x and xk are in Lα.

Now suppose that Dα ⊆ content(T). Since Dα is a tell-tale set for Lα and content(T) 6= Lα,
there is x ∈ content(T) \ Lα. Let s1 ≥ s0 be such that x ∈ content(τs1

) and x ≡M,α,s1
xk for

some k ≤ m(α). If xk /∈ content(T) then for every s ≥ s1, Um(α),n(α) = Reject and M(α, T, s)
will reject α. If there is s2 ≥ s1 such that xk ∈ content(τs2

), then for every s ≥ s2 either
Um(α),n(α) = Reject or k ∈ Um(α),n(α). In both cases M(α, T, s) will reject α since xk /∈ Lα.

Definition 3.2. 1) Let α ∈ {0, 1, . . . , k}ω and β ∈ {1, . . . , k}ω. The function fα,β is defined
as follows:

fα,β(n) =

{

α(m) if m = min{x ≥ n : α(x) 6= 0},

lim supx→∞ β(x) if such m does not exist.

Let Lα,β be the set of all nonempty finite prefixes of fα,β, that is,

Lα,β = {fα,β(0) . . . fα,β(n) : n ∈ ω}.

2) Define the class Lk together with its indexing as follows. Let the index set be

Jk = {(α, β) : α ∈ {0, 1, . . . , k}ω, β ∈ {1, 2, . . . , k}ω}

and let
Lk = {Lα,β}(α,β)∈Jk

.

Note that the class Lk is uncountable and automatic.

11

Theorem 3.3. For every k ≥ 2, the class Lk = {Lα,β}(α,β)∈Jk
is in FExk\ FExk−1.

Proof. We first show that Lk is FExk-learnable. Let A0, A1, . . . , Ak be automata such that
A0 rejects all ω-strings, and for i = 1, . . . , k

Ai accepts (α, β) ⇐⇒ lim sup
x→∞

α(x) 6= 0 or lim sup
x→∞

β(x) = i.

A learner M that FExk-learns Lk acts as follows. At every step s, M reads the first s inputs
from the input text. If all these inputs are equal to #, then M outputs A0. Otherwise, let ts
be the longest string among them. Next, M checks if ts is consistent with α, that is, if there
is a j with 1 ≤ j ≤ k such that for every n < |ts|,

ts(n) =

{

α(m) if m = min{x : n ≤ x < |ts| and α(x) 6= 0},

j if such m does not exist.

If ts is inconsistent with α, then M outputs only the automaton A0 from step s onward.
Otherwise, in the end of step s the learner M outputs Ai, where i is the last symbol of ts.
Now it is not hard to verify that this algorithm is correct.

To show that Lk is not in FExk−1, assume, for the sake of contradiction, that there is a
learner M that can FExk−1-learn Lk. First, we need the following two lemmas.

Lemma 3.4. There are finite strings α′, β ′ and k − 1 automata A1, . . . , Ak−1 such that

a) α′ ∈ {0, 1, . . . , k}∗, β ′ ∈ {1, . . . , k}∗ and |α′| = |β ′|,

b) for every ω-string β such that β ′ ⊂ β ∈ {1, . . . , k}ω, there is a text T for Lα′0ω ,β (which can
be chosen to be the canonical text for Lα′0ω ,β) such that the learner M on index (α′0ω, β)
and text T oscillates only between A1, . . . , Ak−1 after it has seen (α′, β ′).

Proof of Lemma 3.4. Suppose that there are no such α′, β ′ and A1, . . . , Ak−1. In other words,
for any α′, β ′ for which property a) holds and any k − 1 automata A1, . . . , Ak−1, there are
an ω-string β with β ′ ⊂ β ∈ {1, . . . , k}ω and an automaton A /∈ {A1, . . . , Ak−1} such that
M outputs A above (α′, β ′) when processing the index (α′0ω, β) and the canonical text for
Lα′0ω ,β, that is, M outputs A at some step after the first step at which it has seen (α′, β ′).

We now show that Lk /∈ FExk−1 by constructing ω-strings α, β and a text T for Lα,β such
that M oscillates between more than k − 1 many automata when processing (α, β) and T .
At each step i, we will construct finite strings αi, α′

i, βi, β ′
i and a finite text segment τi such

that the following properties hold:

1) αi, α
′
i ∈ {0, 1, . . . , k}∗ and βi, β

′
i ∈ {1, . . . , k}∗.

2) |αi| = |βi| and |α′
i| = |β ′

i|.
3) α′

i ⊆ αi ⊆ α′
i+1, β ′

i ⊆ βi ⊆ β ′
i+1, and τi ⊆ τi+1.

4) α =
⋃

i∈ω αi, β =
⋃

i∈ω βi and T =
⋃

i∈ω τi.
5) For i > 0, αi does not end in 0.
6) τi is a finite prefix of the canonical text for Lαi0ω ,β that contains strings of length

not greater than |αi| (for some β, but since αi does not end in 0 and since we only
consider strings which are shorter than αi, this β is irrelevant).

12

7) When the learner M processes the input (αi, βi) and the text segment τi, it does not
try to read beyond τi in the text before it reads beyond the prefix (α′

i, β
′
i) of (αi, βi).

At step 0, let all α′
0, α0, β ′

0, β0 and τ0 be equal to the empty string. At step i + 1, let
A1, . . . , Ak−1 be the last k − 1 different automata output by M up to the first step at which
it has seen (α′

i, β
′
i) when processing (αi, βi) on text segment τi (if there are less then k − 1

such automata, then consider the set of all these automata instead of A1, . . . , Ak−1).
By our assumption, there are an ω-string β with βi ⊂ β ∈ {1, . . . , k}ω and an automaton

A /∈ {A1, . . . , Ak−1} such that M outputs A above (αi, βi) when processing (αi0
ω, β) and the

canonical text T ′ for Lαi0ω ,β. Due to property 6), T ′ extends τi.
Now wait until the learner M outputs A /∈ {A1, . . . , Ak−1} on (αi0

ω, β) and T ′ above
(αi, βi). Let (α′

i+1, β
′
i+1) and τi+1 be the finite segments of the index and the text seen by that

time. Here, if τi+1 does not properly extend τi, then we take τi+1 to be the extension of τi by
one more symbol; furthermore, if τi+1 ends in a middle of a string from T ′, then we extend
τi+1 up to the beginning of the next string.

Let t be the maximum of |α′
i+1| + 1 and the length of the longest string from τi+1. Let

αi+1 = α′
i+10

sm, where m = lim supx→∞ β(x) and s is chosen in such a way that |αi+1| = t.
Finally, let βi+1 be the prefix of β of length t. This concludes the description of step i + 1.

Now, by the construction, T is a text for Lα,β (in fact, the canonical one), and M oscillates
between more then k − 1 many automata when processing (α, β) and T .

This completes the proof of Lemma 3.4.

Lemma 3.5. Suppose that there is l such that 1 < l < k, and there are l many automata
A1, . . . , Al together with finite strings α′, β ′ with the following properties:

a) α′ ∈ {0, 1, . . . , k}∗, β ′ ∈ {1, . . . , k}∗ and |α′| = |β ′|,

b) for every ω-string β ⊃ β ′ such that 1 ≤ β(x) ≤ l + 1 for all x ≥ |β ′|, the learner M on
index (α′0ω, β) and the canonical text for Lα′0ω ,β oscillates only between A1, . . . , Al after it
has seen (α′, β ′).

Then there are l − 1 many automata {A′
1, . . . , A

′
l−1} ⊂ {A1, . . . , Al} and finite strings α′′, β ′′

such that

1) α′′ ∈ α′{0}∗, β ′′ ∈ β ′{1, . . . , l + 1}∗ and |α′′| = |β ′′|,

2) for every ω-string β ⊃ β ′′ such that 1 ≤ β(x) ≤ l for all x ≥ |β ′′|, the learner M on index
(α′′0ω, β) and the canonical text for Lα′′0ω ,β oscillates only between A′

1, . . . , A
′
l−1 after it

has seen (α′′, β ′′).

Proof of Lemma 3.5. Assume that there are no such α′′, β ′′ and A′
1, . . . , A

′
l−1. Thus, for

any A ∈ {A1, . . . , Al} and any α′′, β ′′ for which property 1) holds, there is an ω-string
β ∈ β ′′{1, . . . , l}ω such that the learner M outputs A on (α′′0ω, β) and the canonical text for
Lα′′0ω ,β above (α′′, β ′′).

For n with 1 ≤ n ≤ l, let Tn be the canonical text for Lα′0ω , nω . We will construct
an ω-string β ∈ β ′{1, . . . , l + 1}ω with lim supx→∞ β(x) = l + 1. Moreover, for every A ∈
{A1, . . . , Al}, there will be n ∈ {1, . . . , l} such that M outputs A infinitely often on index
(α′0ω, β) and text Tn. At each step i we will construct a finite string βi ∈ β ′{1, . . . , l + 1}∗

such that βi ⊆ βi+1 and β =
⋃

i βi.

13

At step 0, let β0 = β ′. At step i+1, let m ∈ {1, . . . , l} be such that m ≡ i+1 (mod l). By
our assumption, there exists an ω-string β ∈ βi{1, . . . , l}ω, and M outputs Am on (α′0ω, β)
and Tn above (α′0s, βi), where n = lim supx→∞ β(x) and s = |βi| − |α′|. Now let β ′

i ⊇ βi be
the finite prefix of β seen by M when it outputs Am for the first time above (α′0s, βi) on text
Tn, and let βi+1 be equal to β ′

i(l + 1), that is, β ′
i followed by number l + 1. This concludes

step i + 1.
By the construction, lim supx→∞ β(x) = l + 1 and for every m = 1, . . . , l and every r ∈ ω,

there is n ∈ {1, . . . , l} such that M outputs Am after reading (α′0s, βr·l+m) on text Tn, where
s = |βr·l+m| − |α′|. Therefore, for every A ∈ {A1, . . . , Al}, there is n ∈ {1, . . . , l} such that M
outputs A infinitely often on (α′0ω, β) and Tn.

Since lim supx→∞ β(x) = l+1, each Tn is different from Lα′0ω ,β. So, every A ∈ {A1, . . . , Al}
must reject (α′0ω, β). On the other hand, since β ∈ β ′{1, . . . , l + 1}ω, the learner M on index
(α′0ω, β) and the canonical text for Lα′0ω ,β oscillates only between A1, . . . , Al after it has seen
(α′, β ′). So, there is A ∈ {A1, . . . , Al} which is output by M infinitely often, and this A
must accept (α′0ω, β). But we just showed that every such A must reject (α′0ω, β). This
contradiction proves the lemma.

This completes the proof of Lemma 3.5.

By Lemma 3.4, the assumption of Lemma 3.5 holds for l = k − 1. Now, applying Lemma 3.5
inductively for l from k − 1 down to 2, we eventually obtain that there are finite strings α′,
β ′ and an automaton A such that

1) α′ ∈ {0, 1, . . . , k}∗, β ′ ∈ {1, . . . , k}∗ and |α′| = |β ′|,

2) for every ω-string β ⊃ β ′ such that β(x) ∈ {1, 2} for all x ≥ |β ′|, the learner M on index
(α′0ω, β) and the canonical text for Lα′0ω ,β outputs only A above (α′, β ′).

For n ∈ {1, 2}, let Tn be the canonical text for Lα′0ω , nω . We now construct an ω-string
β ∈ β ′{1, 2}ω with lim supx→∞ β(x) = 2 such that M outputs only A on (α′0ω, β) and T1

above (α′, β ′). Again, for every i, we will construct βi ∈ β ′{1, 2}∗ such that βi ⊆ βi+1 and
β =

⋃

i βi.
Let β0 = β ′. Suppose we have constructed βi. By our assumption, the learner M on

(α′0ω, βi1
ω) and T1 outputs only A above (α′, β ′). Now wait until the first step when M

outputs A above (α′0s, βi), where s = |βi| − |α′|. Let β ′
i ⊇ βi be the finite prefix of βi1

ω seen
by M by that time, and let βi+1 = β ′

i2.
Since lim supx→∞ β(x) = 2 and since M outputs only A on (α′0ω, β) and T1 above (α′, β ′),

A must reject (α′0ω, β). On the other hand, M on (α′0ω, β) and T2 outputs only A above
(α′, β ′). Therefore, A must accept (α′0ω, β). This contradiction proves the theorem.

Remark 3.6. The last result can be strengthened in the following sense: for every k ≥ 1
there is an indexing {Lβ}β∈I of the class L = { {α0α1α2 . . . αn−1 : n ∈ ω} : α ∈ {1, 2}ω}
such that {Lβ}β∈I is FExk+1-learnable but not FExk-learnable. That is, the class can be
kept fixed and only the indexing has to be adjusted. In order to keep the proof above more
readable, this adjustment was not implemented there.

14

4 Explanatory Learning

The main result of this section is that for every class that satisfies Angluin’s tell-tale condition,
there is an indexing in which the class is explanatorily learnable. A learner which we construct
will, in general, have a mind change sequence which is a subsequence of Reject–Accept–Reject.
That is, at first, the learner may think that the index is wrong and reject it. Then it may
change its mind and start to think that the index is correct and accept it. In the end, the
learner may change its mind again, and in this case it will keep rejecting the index forever.
The mind changes mentioned above are the worst case, and in some situations, such mind
changes may not happen. In the second part of this section we will consider such patterns of
mind changes in more detail and characterize the classes that can be learnt that way.

Theorem 4.1. If a class L = {Lα}α∈I satisfies Angluin’s tell-tale condition, then there is an
indexing for L such that L with this indexing is Ex-learnable.

Proof. Let M be a deterministic automaton recognizing {(x, α) : x ∈ Lα}, and QM be its set
of states. The set J of new indices for L will consist of convolutions ⊗(α, β, γ), where α ∈ I,
β ∈ {0, 1}ω determines a tell-tale set for Lα, and γ ∈ {P(QM)}ω keeps track of states of M
when it reads ⊗(x, α) for some finite strings x ∈ Lα. To simplify the notations we will write
(α, β, γ) instead of ⊗(α, β, γ). Formally, J is defined as follows:

(α, β, γ) ∈ J ⇐⇒ α ∈ I, β = 0n1ω for the minimal n such that

{x ∈ Lα : |x| < n} is a tell-tale set for Lα, and for every k

γ(k) = {q ∈ QM : ∃x ∈ Lα (|x| ≤ k and StM(⊗(x, α), k) = q)}.

We want to show that J is automatic. Again, it is enough to show that it is first-order
definable from other automatic relations. We can define β as the lexicographically largest β ′

that satisfies the formula:

β ′ ∈ 0∗1ω & ∀σ ∈ 0∗
(

(σ ⊆ β ′ & σ0 6⊆ β ′) → {x ∈ Lα : |x| < |σ|} is a tell-tale set for Lα

)

.

The first-order definition for a tell-tale set is given in the beginning of the proof of Theorem 3.1.
All other relations in this definition are clearly automatic.

The definition for γ can be written as

∀σ ∈ 0∗
∧

q∈QM

(

q ∈ γ(|σ|) ↔ ∃x ∈ Lα (|x| ≤ |σ| & StM(⊗(x, α), |σ|) = q)
)

.

For every q ∈ QM , there are automata Aq and Bq that recognize the relations

{(σ, γ) : σ ∈ 0∗ & q ∈ γ(|σ|) } and {(σ, x, α) : σ ∈ 0∗ & StM(⊗(x, α), |σ|) = q) }.

Therefore, J is first-order definable from automatic relations, and hence itself is automatic.
We now show that for every finite string x,

x ∈ Lα ⇐⇒ StM(⊗(x, α), |x|) ∈ γ(|x|),

15

provided that γ is correctly defined from α as in the definition of J . Indeed, if x ∈ Lα, then
StM(⊗(x, α), |x|) ∈ γ(|x|) by the definition of γ. On the other hand, if StM(⊗(x, α), |x|) ∈
γ(|x|), then, again by the definition of γ, there is y ∈ Lα with |y| ≤ |x| such that

StM(⊗(y, α), |x|) = StM(⊗(x, α), |x|).

Therefore, after |x| many steps the run of M on ⊗(x, α) coincides with the run on ⊗(y, α).
Hence M accepts ⊗(x, α), and x is in Lα.

We define a new indexing {Hα,β,γ}(α,β,γ)∈J for the class L as follows

Hα,β,γ = Lα.

Clearly, this indexing is automatic since

x ∈ Hα,β,γ ⇐⇒ x ∈ Lα and (α, β, γ) ∈ J.

Now we describe a learner M that can Ex-learn the class L in the new indexing. Let A be
an automaton that recognizes the set J , and let Z be an automaton that rejects all ω-strings.
The learner M will output only automata A and Z in a sequence Z–A–Z (or a subsequence
of this). In other words, M can start outputting automaton Z, then change its mind to A
and then again change its mind to Z, after which it will be outputting Z forever.

When an index (α, β, γ) is given to the learner M, it always assumes that β and γ are
correctly defined from α. Otherwise, it does not matter which automaton M will output in
the limit, since both A and Z will reject the index (α, β, γ).

At every step s, M reads the first s inputs x1, . . . , xs from the input text. Then M
outputs A if the following conditions hold:

– There exists n ≤ s such that 0n1 ⊆ β.
– For every i with xi 6= #, xi belongs to Lα according to γ, i.e., StM(⊗(xi, α), |xi|) ∈

γ(|xi|).
– For every x with |x| < n, if x belongs to Lα according to γ, then x ∈ {x1, . . . , xs}.

Otherwise, M outputs Z. This concludes the step s.

Note that M makes a change from Z to A or from A to Z at most once. Thus it always
converges to one of these automata. If the index (α, β, γ) is not in J , then M always rejects
it. If (α, β, γ) ∈ J , then for every x, we have that x ∈ Lα according to γ if and only if x is
indeed in Lα. Moreover, the set

Dn = {x : |x| < n and x ∈ Lα according to γ}

is a tell-tale set for Lα, where n is such that β = 0n1ω.
Let T be the input text. If content(T) = Hα,β,γ, then there is a step s ≥ n such that

Dn is contained in {x1, . . . , xs}. Therefore, M will output only A from step s onward. If
content(T) 6= Hα,β,γ, then Dn * content(T) or content(T) * Hα,β,γ. In the first case, M will
output Z on every step. In the second case, there is a step s and an xi ∈ {x1, . . . , xs} such
that xi 6= # and xi is not in Lα according to γ. Therefore, M will output Z from step s
onward. This proves the correctness of the algorithm.

16

In the previous theorem we showed that a class L can be Ex-learnt in a suitable indexing with
the Reject–Accept–Reject sequence of mind changes (or a subsequence thereof) if and only
if it satisfies Angluin’s tell-tale condition. In the rest of this section we will characterize the
classes that are Ex-learnable with the sequences of mind changes as Accept–Reject, Reject–

Accept and Accept–Reject–Accept (or a subsequence thereof). For the ease of notation, we
will drop the phrase “or a subsequence thereof” in the following.

Theorem 4.2. For every automatic class L, the following are equivalent:

1) L can be Ex-learnt with the Accept–Reject sequence of mind changes in a suitable
indexing.

2) L is an inclusion free class, that is, ∀L, L′ ∈ L (L′ is not a proper subset of L).

Proof. Suppose that there is a learner M that Ex-learns L with the sequence of mind changes
as Accept–Reject in the indexing {Lα}α∈I , and suppose that there are different sets Lα and Lβ

such that Lα ⊂ Lβ . Run the learner M on the index β and some text for Lα. Since Lα 6= Lβ ,
there is a step s at which M changes its mind to Reject. Let τs be the finite segment of the
text seen by M at step s. Since Lα ⊂ Lβ , we can extend τs to a text T for Lβ . Then M will
reject β on text T , which is impossible. Therefore, L is inclusion free.

Now let L = {Lα}α∈I be an inclusion free class, and let M be a deterministic automaton
recognizing {(x, α) : x ∈ Lα}. Consider a new set of indices J defined as

(α, γ) ∈ J ⇐⇒ α ∈ I and for every k, γ(k) =

{q ∈ QM : ∃x ∈ Lα (|x| ≤ k and StM(⊗(x, α), k) = q)}.

Define a new automatic indexing {Hα,γ}(α,γ)∈J for the class L as

Hα,γ = Lα.

Let A be an automaton that recognizes the set J , and let Z be an automaton that rejects all
ω-strings. The learner M that Ex-learns L in this new indexing works as follows. At every
step s, M reads the first s inputs x1, . . . , xs from the input text. If every xi which is not equal
to the pause symbol # belongs to Hα,γ according to γ, i.e., if StM(⊗(xi, α), |xi|) ∈ γ(|xi|),
then M outputs A. Otherwise, M outputs Z.

One can verify that M Ex-learns {Hα,γ}(α,γ)∈J with the Accept–Reject sequence of mind
changes.

Theorem 4.3. For every automatic class L, the following are equivalent:

1) L can be Ex-learnt with the Reject–Accept sequence of mind changes in a suitable
indexing.

2) For every L ∈ L there is a finite DL ⊆ L such that for every L′ ∈ L, if DL ⊆ L′ then
L′ = L.

Proof. Suppose that there is a learner M that Ex-learns L with the sequence of mind changes
as Reject–Accept in the indexing {Lα}α∈I . Run M on an index α and any text for Lα. There
must be a step s at which M changes its mind to Accept. Let τs be the finite segment of the
input text seen by M at step s, and let Dα = content(τs). Suppose that there is Lβ 6= Lα

such that Dα ⊆ Lβ . Consider a text T for Lβ that extends τs. If we run M on index α and

17

text T , then at step s the learner will change its mind to Accept, and after that it will be
accepting α forever. On the other hand, M must eventually reject α since Lα 6= content(T).
Therefore, L satisfies the condition 2) of the theorem.

Suppose that the class L = {Lα}α∈I satisfies condition 2) of the theorem. Let M be a
deterministic automaton that recognizes {(x, α) : x ∈ Lα}. The set J of new indices is defined
as follows:

(α, β, γ) ∈ J ⇐⇒ α ∈ I, β = 0n1ω for the minimal n such that for every α′ ∈ I

({x ∈ Lα : |x| < n} ⊆ Lα′ ⇒ Lα′ = Lα), and for every k

γ(k) = {q ∈ QM : ∃x ∈ Lα (|x| ≤ k and StM(⊗(x, α), k) = q)}.

Using a similar argument as in the proof of Theorem 4.1, one can show that J is automatic.
Define a new automatic indexing {Hα,β,γ}(α,β,γ)∈J for the class L as follows

Hα,β,γ = Lα.

Let A be an automaton that recognizes the set J , and let Z be an automaton that rejects all
ω-strings. The learner M that Ex-learns L in this new indexing works as follows. At every
step s, M reads the first s inputs x1, . . . , xs from the input text. Then M outputs A if the
following conditions hold:

– There exists n ≤ s such that 0n1 ⊆ β.
– If 0n1 ⊆ β, then for every x with |x| < n, if x belongs to Lα according to γ, i.e.,

StM(⊗(x, α), |x|) ∈ γ(|x|), then x ∈ {x1, . . . , xs}.

Otherwise, M outputs Z.
From this description of M one can see that it Ex-learns {Hα,β,γ}(α,β,γ)∈J with the Reject–

Accept sequence of mind changes.

Theorem 4.4. For every automatic class L, the following are equivalent:

1) L can be Ex-learnt with the Accept–Reject–Accept sequence of mind changes in a
suitable indexing.

2) L = H ∪ K, where for every L ∈ H and L′ ∈ L (L′ ⊆ L ⇒ L′ = L), and for every
L ∈ K there is a finite DL ⊆ L such that for every L′ ∈ L (DL ⊆ L′ ⇒ L′ = L).

Proof. Suppose that there is a learner M that Ex-learns L with the Accept–Reject–Accept

sequence of mind changes in the indexing {Lα}α∈I . Define H and K as follows:

H = {Lα : every automaton output by M on index α and any text for Lα accepts α}

and

K = {Lα : there is a text T for Lα such that the learner M has a Reject–Accept or

Accept–Reject–Accept pattern of mind changes when it processes α and T}.

Suppose that there are different Lα ∈ L and Lβ ∈ H such that Lα ⊂ Lβ. Run the learner M
on index β and some text for Lα. There must be a step s at which M outputs an automaton
rejecting β. Let τs be the finite segment of the text seen by M at step s. Since Lα ⊂ Lβ , we

18

can extend τs to a text T for Lβ. Now M outputs an automaton rejecting β when it processes
β and T . This contradicts our definition of H.

Suppose that Lα ∈ K and let T be a text for Lα such that the learner M has a pattern of
mind changes Reject–Accept or Accept–Reject–Accept when it processes α and T . Run M
on the index α and the text T . Let s be the step at which M changes its mind from Reject to
Accept, and let τs be the finite segment of text T seen by this step. Define Dα = content(τs).

Suppose that there is Lβ ∈ L such that Lβ 6= Lα and Dα ⊆ Lβ . Consider a text T for Lβ

that extends τs. If we run M on index α and text T , then at step s the learner will change its
mind from Reject to Accept, and after that it will be accepting α forever. On the other hand,
M must eventually reject α since Lα 6= content(T). Therefore, L satisfies the condition 2) of
the theorem.

Now suppose that the class L = {Lα}α∈I satisfies condition 2) of the theorem. Let M
be a deterministic automaton that recognizes {(x, α) : x ∈ Lα}. The set J of new indices is
defined as follows:

(α, β, γ) ∈ J ⇐⇒ α ∈ I, β = 0n1ω for the minimal n such that for every α′ ∈ I

({x ∈ Lα : |x| < n} ⊆ Lα′ ⇒ Lα′ = Lα), and for every k

γ(k) = {q ∈ QM : ∃x ∈ Lα (|x| ≤ k and StM(⊗(x, α), k) = q)}.

Again, the set J is automatic, and we can define a new automatic indexing {Hα,β,γ}(α,β,γ)∈J

for the class L as follows
Hα,β,γ = Lα.

Let A be an automaton that recognizes the set J , and let Z be an automaton that rejects all
ω-strings. The learner M that Ex-learns L in this new indexing works as follows. At every
step s, M reads the first s inputs x1, . . . , xs from the input text. Then M outputs A or Z
according to the following rules:

Case A: There is no n ≤ s such that 0n1 ⊆ β. In this case M outputs A if every xi which
is different from # belongs to Lα according to γ. Otherwise, M outputs Z.

Case B: There exists n ≤ s such that 0n1 ⊆ β. In this case M outputs A if
∀x ((|x| < n and x ∈ Lα according to γ) → x ∈ {x1, . . . , xs}).

Otherwise, M outputs Z.

It is clear that M has an Accept–Reject–Accept sequence of mind changes (or a subsequence
thereof) for any index (α, β, γ) ∈ J and any text T with content(T) ∈ L. If M always
stays in Case A, then Hα,β,γ = Lα is not in K and hence Lα ∈ H. By construction, M
eventually accepts (α, β, γ) if and only if content(T) ⊆ Lα. But since Lα ∈ H, we have that
content(T) ⊆ Lα implies content(T) = Lα.

If at some step the learner M is in Case B, then Hα,β,γ = Lα ∈ K. By construction, M
eventually accepts (α, β, γ) if and only if Dα ⊆ content(T), where Dα = {x ∈ Lα : |x| < n}.
By the definition of β, Dα ⊆ content(T) implies Lα = content(T).

5 Blind Learning

Blind learning is distinguished from models of learning described in the previous sections in
that a learner itself does not see the index tape. So the learner has to encode all the necessary

19

information into a sequence of automata which determines in the limit whether an index is
correct or incorrect. In the case of behaviourally correct learning, this can be done by coding
more and more finite information into such a sequence in a way that every incorrect index is
eventually rejected (but the point from which on this happens depends on an index). In the
case of explanatory learning, this turns out to be impossible. However if a class is countable,
then we can simulate a traditional learner (for a countable class) and encode its output
conjecture into an ω-automaton which then checks whether the index provided is equivalent
to the current output of the traditional learner. In some sense, this is the best that one can
do, as all blind explanatorily learnable classes are countable.

Theorem 5.1. If a class L = {Lα}α∈I satisfies Angluin’s tell-tale condition, then L is
BlindBC-learnable.

Proof. We describe an algorithm for a BlindBC-learner M.
At step s, the learner reads the first s inputs x1, . . . , xs from the input text. If every

xi is equal to the pause symbol #, then the learner outputs an automaton which accepts
exactly the indices of ∅. Otherwise, let zs

1, . . . , z
s
t be such that zs

1 <llex · · · <llex zs
t and

{zs
1, z

s
2, . . . , z

s
t } = {x1, x2, . . . , xs}−{#}. For every k with 1 ≤ k ≤ t, let As

k be an automaton
such that

As
k accepts α ⇐⇒ α ∈ I, ({x1, . . . , xs} − {#}) ⊆ Lα,

{x1, . . . , xs} ∩ {x : x ≤llex zs
k} = Lα ∩ {x : x ≤llex zs

k},

and Lα ∩ {x : x ≤llex zs
k} is a tell-tale set for Lα.

Such an As
k exists since the property of being a tell-tale set is first-order definable from other

automatic relations as described in the beginning of the proof of Theorem 3.1. Finally, in the
end of step s, M outputs an automaton As such that

L(As) =
⋃

1≤k≤t

L(As
k).

To verify that the algorithm is correct, we need to show that for every input text T with
content(T) ∈ L and for every index α

a) if α ∈ I and Lα = content(T), then As accepts α for almost all s,
b) if α ∈ I and Lα 6= content(T) or if α /∈ I, then As rejects α for almost all s.

First, suppose that Lα = content(T). Since L satisfies Angluin’s tell-tale condition, there are
s0 and k such that for all s ≥ s0

Lα ∩ {x : x ≤llex zs
k} is a tell-tale set for Lα.

Let s1 ≥ s0 be such that for every s ≥ s1

{x1, . . . , xs} ∩ {x : x ≤llex zs
k} = Lα ∩ {x : x ≤llex zs

k}.

Then, by definition, As
k accepts α for all s ≥ s1. Therefore, As accepts α for all s ≥ s1.

If α /∈ I, then every As rejects α (note that our definitions of learning do not place
any requirements on the learner when α /∈ I; this point is just for emphasis). So, suppose

20

that α ∈ I and Lα 6= content(T). If ∃x ∈ content(T) \ Lα, then for some s0 we have that
x ∈ {x1, . . . , xs} for all s ≥ s0. Therefore, for all s ≥ s0, ({x1, . . . , xs} − {#}) 6⊆ Lα and As

rejects α. Suppose that content(T) is a proper subset of Lα. Note that for every s and k, if
Lα ∩ {x : x ≤llex zs

k} is a tell-tale set for Lα, then

{x1, . . . , xs} ∩ {x : x ≤llex zs
k} 6= Lα ∩ {x : x ≤llex zs

k}.

Otherwise, content(T) would be a proper subset of Lα containing a tell-tale set for Lα, which
is impossible. So, every As

k and hence every As rejects α.

Theorem 5.2. For every class L = {Lα}α∈I , the following are equivalent

1) L is BlindEx-learnable.

2) L is BlindFEx-learnable.

3) L is at most countable and satisfies Angluin’s tell-tale condition.

Proof. It is obvious that BlindEx-learnable class is BlindFEx-learnable. Suppose that
L ∈ BlindFEx; then Fact 2.13 implies that L satisfies Angluin’s tell-tale condition. We will
show that L is countable.

Let M be a BlindFEx-learner for L. Thus for every L ∈ L and every input text T with
content(T) = L, the learner M outputs at least one automaton AL infinitely often. Since M
is blind, AL must accept all indices α with Lα = L and reject all indices β with Lβ 6= L. If
L and L′ are two different sets from L, then AL 6= AL′. Since there are only countably many
different automata, the class L is at most countable.

Suppose that L is countable and satisfies Angluin’s tell-tale condition. Consider the
following equivalence relation on the set I of indices for L:

α ∼ β if and only if ∀x (x ∈ Lα ↔ x ∈ Lβ).

This equivalence relation is automatic since it is first-order definable from automatic relations.
By assumption, it has countable index. As Bárány, Kaiser and Rubin [2] showed, every auto-
matic equivalence relation of countable index has a countable automatic set of representatives.
Let J ⊆ I be a set of such representatives.

It is well-known that every automatic set of ω-strings is a finite union of sets of the form
V ·Uω, where V and U are automatic sets of finite strings (e.g., see [11]). If the set is countable,
then U contains only a single string u. Therefore, we have that J =

⋃k
i=1 Vi · {ui}

ω for some
automatic sets Vi and finite strings ui.

We now define an automatic indexing of the class L by finite strings. Let Σ be the
alphabet of the set I and let Γ be the alphabet of the sets Lα. Consider an expanded
alphabet Σ′ = Σ ∪ {1, . . . , k} (we assume here that Σ does not contain {1, . . . , k}). A set G
of new indices will be

G = { vi : v ∈ Vi and i ∈ {1, . . . , k} }.

Note that G is automatic. The new indexing {Hw}w∈G of L is defined as follows: for every
vi ∈ G, let

Hvi = Lvuω
i
.

21

We need to show that the relation R = {(x, w) : x ∈ Hw} is automatic. Let M be a
deterministic Muller automaton that recognizes the relation {(x, α) : x ∈ Lα}. A finite
automaton A that recognizes R can be defined informally as follows. On input ⊗(x, vi), A
simulates M on the input ⊗(x, vuω

i). After processing its input, A accepts it if and only if
there is an accepting run of M on ⊗(x, vuω

i) (that is, A replaces i by uω
i in its simulation).

Thus,
A accepts ⊗ (x, vi) ⇐⇒ M accepts ⊗ (x, vuω

i).

Below is a formal definition of A.
Suppose that M = (QM , (Γ ∪ Σ ∪ {#})2, qM

0 , TM). For i = 1, . . . , k, let ui = ui,1 . . . ui,ni
,

where ni is the length of ui. Then A = (Q, (Γ ∪ Σ′ ∪ {#})2, q0, T, F), where

1) Q = { (q, i, j) : q ∈ QM , 0 ≤ i ≤ k, if i = 0 then j = 0, and if i > 0 then
1 ≤ j ≤ ni }.

2) q0 = (qM
0 , 0, 0).

3) The transition function T is defined as follows:

a) for every a ∈ Γ ∪ {#} and b ∈ Σ,
T ((q, 0, 0), (a, b)) = (TM(q, (a, b)), 0, 0);

b) for every a ∈ Γ ∪ {#} and i ∈ {1, . . . , k},
T ((q, 0, 0), (a, i)) = (TM(q, (a, ui,1)), i, 1);

c) for every a ∈ Γ, i ∈ {1, . . . , k} and j ∈ {1, . . . , ni},
T ((q, i, j), (a, #)) = (TM(q, (a, ui,j+1)), i, j + 1),

where it is assumed that ni + 1 = 1.

4) The final states are defined as

F = { (q, i, j) ∈ Q : i > 0, and there exists an accepting run of M

on the string ⊗
(

#ω, (u
[j]
i)ω

)

starting from q },

where u
[j]
i is the cyclic shift of ui by j symbols, i.e.,

u
[j]
i = ui,j+1 . . . ui,ni

ui,1 . . . ui,j.

Note that the final states F of the automaton A can be computed effectively.
Since {Hw}w∈G is automatic and satisfies Angluin’s tell-tale condition, there is a recursive

learner M′ such that, on any input text T for Hw (where w ∈ G), M′ converges on T to an
index w′ such that Hw′ = Hw (see [10]; this is traditional Ex-learning of countable automatic
families satisfying Angluin’s tell-tale condition). For every w ∈ G, let Aw be an automaton
such that

L(Aw) = {α ∈ I : ∀x (x ∈ Lα ↔ x ∈ Hw)}.

Such an Aw exists since L(Aw) is first-order definable from automatic relations. Now the
BlindEx-learner M for the class L = {Lα}α∈I acts as follows: on an input text T for some
L ∈ L, it simulates the work of M′, and whenever M′ outputs an index w ∈ G, the learner
M outputs the automaton Aw.

22

Since M′ converges to an index w such that Hw = content(T), we have that M converges
to the automaton Aw such that L(Aw) = {α ∈ I : Lα = content(T)}. Therefore, the class L
is BlindEx-learnable.

The following corollary summarizes the main results from this and the previous sections.

Corollary 5.3. For every automatic class L, the following are equivalent:

1) L satisfies Angluin’s tell-tale condition.

2) L is BC-learnable.

3) L is BlindBC-learnable.

4) L is FEx-learnable.

5) L is Ex-learnable in a suitable indexing.

Proof. The implications 3) ⇒ 2) and 4) ⇒ 2) are trivial; 2) ⇒ 1) and 5) ⇒ 1) follow from
Fact 2.13; 1) ⇒ 3) follows from Theorem 5.1; 1) ⇒ 4) follows from Theorem 3.1; and 1) ⇒ 5)
follows from Theorem 4.1.

6 Partial Identification

Partial identification is, in the traditional setting of inductive inference, a learning criterion
where the learner outputs on every text of an r.e. language infinitely many (not necessarily
distinct) hypotheses such that exactly one hypothesis occurs infinitely often and that hypoth-
esis is correct. There is a recursive learner succeeding on all r.e. sets, hence this concept is
omniscient in the traditional setting [13]. Also in our model, every automatic class is partially
identifiable.

Theorem 6.1. Every automatic class with any given automatic indexing is Part-learnable.

Proof. Consider an automatic indexing {Lα}α∈I for a class L. Let M be an automaton
recognizing the relation ‘x ∈ Lα’, and let ≡M,α and ≡M,α,s be the relations defined in the proof
of Theorem 3.1. For every pair of strings (x, y) with x <llex y, let Z(x,y) be an automaton that
rejects all inputs. For every k ≥ 1 and every tuple (x1, . . . , xk) with x1 <llex · · · <llex xk, let
A(x1,...,xk) be an automaton that accepts an ω-string α if and only if

∀y (y ∈ Lα ⇐⇒ y ≡M,α xi for some i ∈ {1, . . . , k}).

We assume that all the automata defined above are different from each other. Extend the
ordering ≤llex to pairs of strings as follows: (x′, y′) ≤llex (x, y) if and only if one of the following
conditions is satisfied:

1) max{|x′|, |y′|} < max{|x|, |y|},
2) max{|x′|, |y′|} = max{|x|, |y|} and x′ <llex x,
3) max{|x′|, |y′|} = max{|x|, |y|}, x = x′ and y′ ≤llex y.

Let M be a learner constructed to satisfy the following properties:

1) M outputs the automaton Z(x,y) on index α and text T at least n times if and only if
there exists s ≥ n such that

23

– x <llex y and x ≡M,α,s y,
– |{x, y} ∩ content(τs)| = 1, where τs is the initial segment of T of length s,
– there is no (x′, y′) <llex (x, y) for which the above two properties hold.

2) M outputs the automaton A(x1,...,xk) on index α and text T at least n times if and only if
there exists s ≥ n such that

– for every i ∈ {1, . . . , k} and every y <llex xi we have that y 6≡M,α,s xi,
– {x1, . . . , xk} ⊆ content(τs),
– for every z /∈ {x1, . . . , xk} with |z| ≤ n, if ∀y <llex z (y 6≡M,α,s z) then z /∈ content(τs),
– for every x, y such that max{|x|, |y|} ≤ n, if x <llex y and x ≡M,α,s y then |{x, y} ∩

content(τs)| 6= 1.

It is not hard to verify that if the learner M satisfies the above properties, then for any α
and T :

a) M outputs Z(x,y) infinitely often on α, T if and only if (x, y) is the ≤llex least pair such
that x <llex y, x ≡M,α y and |{x, y} ∩ content(T)| = 1.

b) M outputs A(x1,...,xk) infinitely often on α, T if and only if x1, . . . , xk are exactly those
≤llex least representatives of equivalence classes of ≡M,α which belong to content(T), and
there is no (x, y) such that x <llex y, x ≡M,α y and |{x, y} ∩ content(T)| = 1.

Now, if content(T) is not equal to the union of equivalence classes of ≡M,α, then M outputs
only Z(x,y) infinitely often for some (x, y), and it rejects the index α. Otherwise, M out-
puts only A(x1,...,xk) infinitely often, where x1, . . . , xk are the ≤llex least representatives of the
equivalence classes belonging to content(T). By definition, A(x1,...,xk) accepts index α if and
only if Lα is the union of the equivalence classes of x1, . . . , xk. The latter is equivalent to
Lα = content(T) by the property b) above.

Theorem 6.2. A class L = {Lα}α∈I is in BlindPart if and only if it is at most countable.

Proof. First, we show that if L ∈ BlindPart, then it is at most countable. Let M be
a BlindPart-learner for L. Fix a set L ∈ L and some text T for L. The learner M
outputs exactly one automata infinitely often when processing the text T . Let A be such an
automaton. Since M is blind, A must accept only those α for which Lα = L. Since there are
only countably many different automata, the class L is at most countable.

To prove the other implication, assume that L is at most countable. In this case we can
construct a new automatic indexing {Hw}w∈G for L by finite strings as shown in the proof of
Theorem 5.2. Moreover, we can choose this indexing to be one-to-one. For every w ∈ G, let
Aw be an automaton that recognizes the set {α ∈ I : Lα = Hw}.

The BlindPart-learner M works as follows. At every step s, M reads the first s inputs
x1, . . . , xs from the input text T , and for every w ∈ G with |w| ≤ s, it computes the coincidence
between {x1, . . . , xs} and Hw at step s, that is,

C(w, s) = max {n : n ≤ s and for every string x with |x| ≤ n

(x ∈ {x1, . . . , xs} ⇐⇒ x ∈ Hw)}.

If there exists a w ∈ G with |w| ≤ s and C(w, s) > C(w, s − 1), then M outputs Aw for the
≤llex least such w. Otherwise, M does not produce an output at step s.

24

To verify that the algorithm is correct, let T be a text for a set L ∈ L and let w0 be an index
such that Hw0

= L. Since the indexing {Hw}w∈G is one-to-one, we have that lims C(w0, s) =
∞, but for every w′ 6= w0, lims C(w′, s) < ∞. Thus, every Aw′ with w′ 6= w0 will be output
only finitely often. Let s0 be a step by which all C(w′, s) with w′ <llex w0 have reached their
limit. Then at every step s ≥ s0 such that C(w0, s) > C(w0, s−1), M outputs Aw0

. Therefore,
Aw0

is output infinitely often and by definition L(Aw0
) = {α ∈ I : Lα = Hw0

= L}.

References

[1] Dana Angluin. Inductive inference of formal languages from positive data. Information
and Control, 45(2):117–135, 1980.

[2] Vince Bárány, Lukas Kaiser and Sasha Rubin. Cardinality and counting quantifiers on
omega-automatic structures. In Proceedings of the 25th International Symposium on
Theoretical Aspects of Computer Science, STACS 2008, 385–396, 2008.

[3] Janis Bārzdiņš. Two theorems on the limiting synthesis of functions. Theory of Algo-
rithms and Programs, 1:82–88, Latvian State University, Riga, Latvia, 1974.

[4] Achim Blumensath and Erich Grädel. Automatic structures. In 15th Annual IEEE
Symposium on Logic in Computer Science (Santa Barbara, CA, 2000), 51–62. IEEE
Computer Society Press, Los Alamitos, CA, 2000.

[5] Achim Blumensath and Erich Grädel. Finite presentations of infinite structures: au-
tomata and interpretations. Theory of Computing Systems, 37(6):641–674, 2004.

[6] J. Richard Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

[7] J. Richard Büchi. On a decision method in restricted second order arithmetic. In Logic,
Methodology and Philosophy of Science (Proceedings 1960 International Congress), 1–11.
Stanford University Press, Stanford, California, 1962.

[8] John Case. The power of vacillation in language learning. SIAM Journal on Computing,
28(6):1941–1969, 1999.

[9] E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

[10] Sanjay Jain, Qinglong Luo and Frank Stephan. Learnability of automatic classes. In A.
H. Dediu, H. Fernau and C. Martin-Vide, editors, 4th International Conference on Lan-
guage and Automata Theory and Applications (LATA 2010), Lecture Notes in Computer
Science 6031, Springer, 2010, 321–332.

[11] Bakhadyr Khoussainov and Anil Nerode. Automata theory and its applications.
Birkhäuser Boston, Inc., Boston, MA, 2001.

25

[12] Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In Logic
and Computational Complexity (Indianapolis, IN, 1994), volume 960 of Lecture Notes in
Computer Science, 367–392. Springer, Berlin, 1995.

[13] Daniel N. Osherson, Micheal Stob and Scott Weinstein. Systems that learn. An intro-
duction to learning theory for cognitive and computer scientists. Bradford Book—MIT
Press, Cambridge, MA, 1986.

[14] Moshe Y. Vardi. The Büchi complementation saga. In Proceedings of the International
Symposium on Theoretical Aspects of Computer Science, STACS 2007, volume 4393 of
Lecture Notes in Computer Science, 12–22. Springer, Berlin, 2007.

26

