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Abstract
This paper studies labeled sample compression for multi-label concept classes. For a specific ex-
tension of the notion of VC-dimension to multi-label classes, we prove that every maximum multi-
label class of dimension d has a sample compression scheme in which every sample is compressed
to a subset of size at most d. We further show that every multi-label class of dimension 1 has a
sample compression scheme using only sets of size at most 1. As opposed to the binary case, the
latter result is not immediately implied by the former, since there are multi-label concept classes of
dimension 1 that are not contained in maximum classes of dimension 1.
Keywords: multi-label concept classes, sample compression, VC dimension

1. Introduction

The combinatorial structure of a concept class is crucial for the complexity of learning concepts
from the class. An important combinatorial parameter in this context is the Vapnik-Chervonenkis
Dimension (VC-dimension), which provides bounds on the sample complexity in PAC-learning (Blu-
mer et al., 1989). Another parameter that provides sample bounds is the smallest possible size of
a sample compression scheme (SCS) of the class (Littlestone and Warmuth, 1986; Floyd and War-
muth, 1995). An SCS for a concept class C over the instance space X consists of two mappings,
namely, (i) a compression mapping f , which, given a set S of examples over X that are labeled
consistently with some concept in C, returns a subset f(S) = S′ of S (the compression set for
S), and (ii) a decompression mapping g, which, given any compression set S′ = f(S) (for some
S consistent with at least one concept in C), predicts labels for each instance in X , such that all
examples from S are labeled correctly by g(S′).1 The size of such an SCS is the largest cardinality
of any compression set that the compression mapping produces on input of sets labeled according
to concepts in C.

Almost thirty years ago, Littlestone and Warmuth (1986) asked whether there is any interesting
function of the VC-dimension that upper-bounds the size of a smallest SCS. To date, there is no
general answer to this question. Partial answers in the literature concern mostly the case of max-
imum concept classes and the case of concept classes of VC-dimension 1. A finite concept class

1. In the past, various forms of sample compression have been studied, but we focus only on the one described here.
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is called maximum of VC-dimension d, if it has the largest possible size among all classes of VC-
dimension d over the same instance space, i.e., if its size meets the well-known Sauer bound (Sauer,
1972; Welzl, 1987).2 Floyd and Warmuth (1995) show that every maximum concept class of VC-
dimension d has an SCS of size d. Since an SCS for a concept class C also applies to all subclasses
ofC, Floyd and Warmuth’s result implies that every concept class of VC-dimension 1 has an SCS of
size 1. This is due to the fact that every concept class of VC-dimension 1 is contained in a maximum
class of VC-dimension 1 over the same instance space (Welzl and Woeginger, 1987).

To the best of our knowledge, the notion of SCS has been studied exclusively for binary concept
classes, i.e., subsets of the power set of {0, 1}|X|. This paper extends the study of sample compres-
sion to the multi-label case, where a concept may have a number of different labels in each instance.
A concept class is then a subset of the product {0, . . . , N1} × · · · × {0, . . . , Nm}, where the set of
possible labels for an instance Xi ∈ X = {X1, . . . , Xm} is {0, . . . , Ni}. Since a vast number of
applications in Machine Learning deal with multi-class classification, the study of multi-label con-
cept classes on a formal level certainly deserves the attention of the learning theory community. As
Littlestone and Warmuth’s proof (1986) that (in the binary case) an SCS of size d yields a successful
PAC-learner with bounds expressed in terms of d can be immediately transferred to the multi-label
case, it is natural to extend also the study of SCS to the multi-label case, which is the focus of this
paper.

Most prior work on multi-label classes concerns the combinatorial structure of such classes, and
in particular various options for defining analogues of the VC-dimension (Alon, 1983; Natarajan,
1989; Vapnik, 1989; Pollard, 1990; Gurvits, 1997) that coincide with the VC-dimension in the
binary case. Haussler and Long (1995) generalize Sauer’s bound to multi-label classes for a variety
of such analogues of VC-dimension. It turns out that, as in the binary case, the finiteness of most
of the dimensions studied is sufficient and necessary for the PAC-learnability of multi-label classes
(Ben-David et al., 1995). More recent studies show that results relating the VC-dimension to the
density of the so-called one-inclusion graph of a concept class can be also extended to some of
the multi-label analogues (Rubinstein et al., 2009; Simon and Szörényi, 2010) and provide sample
bounds for various learning models and strategies (Rubinstein et al., 2009; Daniely et al., 2011).

The results on which our study builds are those presented by Gurvits (1997), who studies a
whole family of analogues of the VC-dimension. As proven by Ben-David et al. (1995), any notion
of VC-dimension in this family that satisfies a very natural and simple condition to describe, pro-
vides a characterization of PAC-learnability of the class if and only if the VC-dimension is finite.
Below, we define a particular notion of dimension, called the VCDΨ∗-dimension, which belongs
to the family studied by Gurvits and Ben-David et al., and thus inherits the properties proven for
all members of that family. Given a multi-label class C over X = {X1, . . . , Xm}, consider all
m-tuples of mappings ψi that map the label set of Xi to {0, 1}. Each such tuple of mappings, when
applied to C, yields a binary concept class. The VCDΨ∗-dimension of C is then the maximum
VC-dimension over the binary classes obtained from all such tuples of mappings. The VCDΨ∗-
dimension of C provides an upper bound on all other VC-dimension notions studied in the literature
and is hence the most promising version of VC-dimension for proving upper bounds on the size of
SCSs in terms of VC-dimension. Gurvits uses linear algebraic methods for generalizing Sauer’s
bound to his VC-dimension analogues, and thus for the VCDΨ∗-dimension, so that the notion of

2. In this paper, we consider only finite concept classes, and so we always assume |X| to be finite. However, our results
on sample compression apply to the infinite case as well.
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maximum class naturally extends to the VCDΨ∗ case (we then use the term “VCDΨ∗-maximum
class.”)

The main contributions of our work are the following.
(A) We prove that every VCDΨ∗-maximum class has an SCS whose size equals its VCDΨ∗ . The

scheme and also parts of the proof follow the work on the so-called VC Compression Scheme for
binary maximum classes, as introduced by Floyd and Warmuth (1995). However, there are some
technical difficulties that need to be overcome in order to adapt Floyd and Warmuth’s technique.
The latter relies on the fact that every maximum class C of VC-dimension d < |X|, in the binary
case, induces certain maximum classes over an instance space X \ {Xi} for any i ∈ {1, . . . ,m}:
(i) when projecting C onto X \ {Xi}, one obtains a maximum class of VC-dimension d, called the
restriction of C to X \ {Xi} and (ii) the set of all concepts c in this restriction for which both the
concepts c ∪ {(Xi, 0)} and c ∪ {(Xi, 1)} are contained in C, called the reduction of C w.r.t. Xi, is
maximum of VC-dimension d−1. For the multi-label case, Gurvits (1997) proves that the restriction
of a VCDΨ∗-maximum class is again VCDΨ∗-maximum, but the literature offers no corresponding
result for the reduction. In fact, it is not at all obvious how the reduction should even be defined in
the multi-label case: should a concept c in the reduction w.r.t.Xi have allNi+1 possible extensions
contained in C (i.e., c∪{(Xi, `)} ∈ C for all ` ∈ {0, . . . , Ni}) or should we only require there to be
at least two different extensions of c in C? A core result of our paper is that, for VCDΨ∗-maximum
classes, we do not have to decide which definition of reduction to chose, since in such classes we
obtain that c has either a unique extension to C or all Ni + 1 possible extensions to C—no other
cases are possible. A large part of Section 4 is devoted to the proof of this technical result, which
then allows us to use Floyd and Warmuth’s technique.

(B) We show that every class of VCDΨ∗ 1 has an SCS of size 1. The reasoning used in the
binary case does not apply here; in particular, we provide a class of VCDΨ∗ 1 that is not contained
in a VCDΨ∗-maximum class of VCDΨ∗ 1 over the same instance space. Any such class cannot
trivially inherit an SCS of size 1 from a VCDΨ∗-maximum class of VCDΨ∗ 1, as it would in the
binary case. Thus we give an independent constructive proof that provides an SCS of size 1 for each
class whose VCDΨ∗ equals 1. This second major contribution of our work is presented in Section 5.

2. Preliminaries and notation

Let N+ denote the set of all positive natural numbers. For m ∈ N+, let [m] = {1, . . . ,m} and
[0] = ∅. Let m ∈ N+ and Ni ∈ N+ for 1 ≤ i ≤ m. The finite set X = {X1, . . . , Xm} is called
an instance space, where each instance Xi is associated with the value set Xi = {0, . . . , Ni} for all
i ∈ [m]. We call c ∈

∏m
i=1Xi a (multi-label) concept on X , and a (multi-label) concept class C is

then a set of concepts onX , that is, C ⊆
∏m
i=1Xi. For c ∈ C, let c(Xi) denote the ith coordinate of

c. In the rest of the paper, we will always implicitly assume that a given concept class C is a subset
of
∏m
i=1Xi for somem ∈ N+, where eachXi = {0, . . . , Ni} for someNi ∈ N+. WhenNi = 1 for

all i ∈ [m], C is a binary concept class. In fact, a binary concept c ∈ {0, 1}m is an m-dimensional
binary vector, and hence a binary concept class is a subset of the m-dimensional vector space over
the field F2 = {0,1}.

Table 1 (left) shows a concept class over X = {X1, X2, X3}. In this class, X1 = X2 = X3 =
{0, 1, 2}, that is, Ni = 2 for all 1 ≤ i ≤ 3. We will often use this matrix form to represent a concept
class, i.e., a row corresponds to a concept, and a column corresponds to an instance in X .
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c ∈ C X1 X2 X3

c1 2 0 1

c2 1 1 1

c3 1 2 2

c4 0 2 0

c5 2 0 0

c′ ∈ C′ X1 X2 X3

c′1 1 1 0

c′2 0 0 0

c′3 * 0 0 0

c′4 0 0 1

c′5 1 1 1

c′′ ∈ C′′ X1 X2 X3

c′′1 1 1 0

c′′2 0 0 0

c′′3 0 0 1

c′′4 * 0 0 0

c′′5 * 1 1 0

Table 1: A concept class C (left) and two binary classes obtained by applying column-wise label
mappings to C. Duplicate concepts introduced by the mappings are marked with *.

A labeled example is a pair (Xt, `), where Xt ∈ X and ` ∈ {0, . . . , Nt}. A set of labeled ex-
amples is called a sample. For a sample S, we define X(S) = {Xi ∈ X | (Xi, `) ∈ S for some `}.

For Y = {Xi1 , . . . , Xik} ⊆ X with i1 < i2 < · · · < ik, we denote the restriction of a concept c
to Y by c|Y and define it as c|Y = (c(Xi1), . . . , c(Xik)). Similarly, C|Y = {c|Y | c ∈ C} denotes the
restriction of C to Y . We also denote c|X\{Xt} and C|X\{Xt} by c−Xt and C −Xt, respectively.

In the binary case, the reduction CXt of C w.r.t. Xt ∈ X consists of all concepts in C −Xt that
have both possible extensions to concepts in C, i.e., CXt = {c ∈ C −Xt | c× {0, 1} ⊆ C}. Note
that CXt is a subset of C − Xt that has the same reduced domain X \ {Xt}. For a class C over
binary instances, Welzl (1987) show that for Xi, Xj ∈ X with Xi 6= Xj , (CXi)Xj = (CXj )Xi .
Consequently, for Y = {Xi1 , . . . , Xik} ⊆ X , CY is defined as ((CXi1 ) · · ·)Xik (Welzl, 1987). It is
not obvious how the definition of reduction should be extended to the multi-label case. One could
consider concepts in C −Xt that have at least two distinct extensions, or concepts in C −Xt that
have all Nt + 1 extensions to concepts in C. We will address this problem again in Section 4.

In the binary case, Y ⊆ X is shattered by C if and only if C|Y =
∏
Xi∈Y Xi = {0, 1}|Y |. The

size of the largest set Y shattered by C is called the VC-dimension of C and denoted VCD(C).
In the literature, a variety of ways to extend the notion of VC-dimension to the non-binary case

have been studied (Alon, 1983; Natarajan, 1989; Vapnik, 1989; Pollard, 1990; Gurvits, 1997). We
follow the framework proposed by Gurvits (1997), which generalizes over many of these notions.

Definition 1 (Gurvits, 1997) Let Ψi, 1 ≤ i ≤ m, be a family of mappings ψi : Xi → {0, 1}. Let
Ψ = Ψ1 × · · · × Ψm. We denote the VC-dimension of C w.r.t. Ψ by VCDΨ(C) and define it by
VCDΨ(C) = maxψ∈Ψ VCD(ψ(C)).

By choosing special families of mappings from {0, . . . , Ni} to {0, 1}, for all i ∈ [m], we
obtain different notions of dimension. For example, the Graph-dimension (Natarajan, 1989) equals
VCDΨG1

×···×ΨGm
, where, for all i, ΨGi = {ψG,k : 0 < k ≤ n} and ψG,k(x) = 1 if x = k,

ψG,k(x) = 0 if x 6= k. That means, one considers all ways of mapping the values in each column
to 1, if they equal some value k and to 0, if they differ from k. For each column, a different value of
k may be used. The largest possible VC-dimension over the resulting binary classes is the Graph-
dimension. For instance, the class C on the left of Table 1 has Graph-dimension 2, as witnessed by
the tuple of mappings that uses 2 as the value of k for X1, and 0 as the value of k for X2 and X3.
This tuple transforms C to the binary class C ′ shown in the middle part of the table. Here the set
{X1, X3} is shattered by C ′. (No binary class resulting from C can shatter X , since C has only 5
concepts.) Note that not every tuple of mappings yields a VC-dimension of 2, as shown in the right
part of the table: the class C ′′ is obtained when the value of k is set to 2 for both X1 and X3, while
it is 0 for X2.
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We will focus mostly on the following version of VC-dimension for multi-label concept classes.

Definition 2 Ψ∗ denotes the family of all m-tuples (ψ1, . . . , ψm) of mappings ψi : Xi → {0, 1},
and VCDΨ∗(C) = maxψ∈Ψ∗ VCD(ψ(C)). C shatters a set Y ⊆ X if there is some ψ ∈ Ψ∗ such
that the binary class ψ(C) shatters Y .

For example, the concept class C on the left of Table 1 shatters {X1, X3} and VCDΨ∗(C) = 2.
For binary classes, the smallest possible size of a sample compression scheme yields sample

bounds for PAC-learning (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995) and a big open
question is whether this parameter can be upper-bounded by a function linear in the VC-dimension.
The notion of sample compression generalizes to the multi-label case in a straightforward way.

Definition 3 (Littlestone and Warmuth, 1986) A sample compression scheme for C is a pair (f, g)
of mappings with the following properties. Given any sample S that is labeled consistently with
some concept in C, one requires (i) f(S) ⊆ S, and (ii) g(f(S)) = (l1, . . . , lm), where (Xi, `i) ∈ S
implies `i = li, for all i ∈ [m]. The size of (f, g) is the maximum cardinality of a set f(S), taken
over all samples S consistent with some concept in C.

Floyd and Warmuth (1995) prove that every binary maximum class C with VCD(C) = d (i.e.,
a class C with |C|=

∑d
i=0

(
m
i

)
, which is the largest possible size according to Sauer (1972)) has a

sample compression scheme of size VCD(C). Since every binary class of VCD 1 is contained in a
maximum class of VCD 1 (Welzl and Woeginger, 1987), all classes C with VCD(C) = 1 have a
sample compression scheme of size 1.

3. A generalization of Sauer’s bound

Let Ψi be a family of mappings ψi : Xi → {0, 1}. The statement “Ψi spans RNi+1” or “Ψi is
spanning on Xi” means that any real-valued function on Xi can be expressed as a linear combina-
tion of mappings from Ψi. Note that each real-valued function f on Xi corresponds to a vector
(f(0), f(1), . . . , f(Ni)) ∈ RNi+1. So, Ψi = {ψ1, . . . , ψm} is spanning on Xi iff any vector
in RNi+1 (real-valued function on Xi) can be expressed as a linear combination of the vectors
ψj = (ψj(0), . . . , ψj(Ni)) for j ∈ [m]. We will make use of some results by Gurvits (1997).

Definition 4 Let C = {c1, . . . , cn}, |C|= n, and let p(X1, . . . , Xm) ∈ R[X1, . . . , Xm] be a poly-
nomial. We identify p with a vector p = (p1, . . . , pn) ∈ R|C| via pi = p(ci(X1), . . . , ci(Xm)). The
phrase “p(X1, . . . , Xm) = 0 on C” means that p corresponds to the zero vector in R|C|.

If P is a collection of polynomials from R[X1, . . . , Xm], then we say that P spans R|C| if the
set of vectors that correspond to polynomials from P spans R|C|.

Theorem 5 (Gurvits, 1997; Smolensky, 1997) Let Xi = {0, 1} for all i ∈ [m]. If VCD(C) = d
then the set of monomials {Xi1 · · ·Xik | 1 ≤ i1 < · · · < ik ≤ m, k ≤ d} spans R|C|.

To make the proofs in the paper easier to follow, we make use of the following notation. We
define P r(N1, . . . , Nm) to be the following collection of monomials with variables in X:

P r(N1, . . . , Nm) = { Xni1
i1
· · ·Xnik

ik
: k ≤ r, and 0 ≤ nit ≤ Nit for all t, 1 ≤ t ≤ k}.
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Let Φr(N1, . . . , Nm) = |P r(N1, . . . , Nm)|. It is easy to verify that

Φr(N1, . . . , Nm) = 1 +
∑

1≤i≤m
Ni +

∑
1≤i1<i2≤m

Ni1Ni2 + · · ·+
∑

1≤i1<i2<···<ir≤m
Ni1Ni2 · · ·Nir .

Theorem 6 (Gurvits, 1997) Let Ψi, 1 ≤ i ≤ m, be a spanning family of mappings ψi : Xi →
{0, 1}, and Ψ = Ψ1 × · · · × Ψm. If VCDΨ(C) = d then the monomials from P d(N1, . . . , Nm)
span the vector space R|C|.

One immediately obtains the following generalization of Sauer’s bound.

Corollary 7 (Generalized Sauer bound) Let Ψi, 1 ≤ i ≤ m, be a spanning family of mappings
ψi : Xi → {0, 1}, and Ψ = Ψ1 × · · · ×Ψm. If VCDΨ(C) = d then |C|≤ Φd(N1, . . . , Nm).

Since Ψ∗ is a spanning family, this bound applies also to VCDΨ∗ , and the following general
definition of maximum classes in particular defines the notion of VCDΨ∗-maximum class.

Definition 8 Let Ψi, 1 ≤ i ≤ m, be a family of mappings ψi : Xi → {0, 1}. Let Ψ = Ψ1 × · · · ×
Ψm. C is called VCDΨ-maximum if VCDΨ(C) = d and |C|= Φd(N1, . . . , Nm).

The class of all sets of size up to VCD(C), which is the standard example of a VCD-maximum
class in the binary case, has a straightforward extension to a VCDΨ∗-maximum multi-label class,
namely the class of concepts that have at most VCDΨ∗(C) many non-zero elements. As another
intuitive example of a maximum multi-label class, consider the following geometric example of a
class that is maximum of VCDΨ∗ 2. The instance space X is a set of m lines in general position
on the plane, i.e., no two lines are parallel and no three lines share a common point. Each instance
takes values in {−1, 0,+1}, depending on which side of the line the concept is on (and 0 if the
concept is contained within the line itself). Then (i) the number of regions (which will be concepts
with instance values−1 or +1) is 1+m+m(m−1)/2; (ii) the number of segments and rays (which
will be concepts with value 0 in one particular instance and values −1 or +1 in all other instances)
is m2; (iii) the number of intersection points (which will be concepts with value 0 on exactly two
instances) is m(m − 1)/2. The sum of these numbers is 1 + 2m2 = Φ2(2, . . . , 2). A VCDΨ∗-
maximum class of dimension 2 contains as concepts all regions, segments, rays and intersection
points. One can verify that no set of three instances is shattered using any label mapping to a binary
class.

In the next section, we will show that every VCDΨ∗-maximum class of dimension d has a
sample compression scheme of size d.

All non-trivial claims made in this paper are proven either in the main body or in the Appendix.
The Appendix also contains proofs of Theorems 5 and 6, translated into our notation.

4. Sample compression for VCDΨ∗-maximum classes

Let idi denote the identity mapping on Xi. We will now show that for a VCDΨ-maximum class
over a spanning family Ψ, if we only map one column to a set smaller than the original set of labels
and keep the other columns unchanged, the resulting class is still maximum of the same dimension.
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Lemma 9 Let Ψ = Ψ1 × · · · × Ψm, where each Ψi, for i ∈ [m], is a spanning family of
mappings on Xi, and let C be VCDΨ-maximum. Let ϕt ∈ Ψt be a non-constant mapping and
ϕt = (id1, . . . , idt−1, ϕt, idt+1, . . . , idm). Let Ψ′t = {idt, 1− idt} 3 and Ψ′ = Ψ1 × · · · ×Ψt−1 ×
Ψ′t ×Ψt+1 · · · ×Ψm. Then ϕt(C) is VCDΨ′-maximum of dimension VCDΨ(C).

Proof Let d = VCDΨ(C). W.l.o.g., let t = 1, i.e, ϕ1 : X1 → {0, 1} and ϕ1 = (ϕ1, id2, . . . , idm).
Let X ′1 = ϕ1(X1) = {0, 1} and C ′ = ϕ1(C). Then, VCDΨ′(C

′) = maxψ∈Ψ′ VCD(ψ(C ′)) ≤
maxψ∈Ψ VCD(ψ(C)) = d. Since VCDΨ′(C

′) ≤ d, the monomials from P d(1, N2, . . . , Nm) with
variables in {X ′1, X2, . . . , Xm} span R|C′|, by Theorem 6. If C ′ is not VCDΨ′-maximum, then the
monomials in P d(1, N2 . . . , Nm) must be linearly dependent. We will show that a linear depen-
dency between the monomials in P d(1, N2, . . . , Nm) with variables in {X ′1, X2, . . . , Xm} implies
a linear dependency between the monomials in P d(N1, . . . , Nm) with variables in {X1, . . . , Xm}.
This will contradict the assumption that C is VCDΨ-maximum because if |C|= Φd(N1, . . . , Nm)
then the monomials from P d(N1, . . . , Nm) must be linearly independent.

Assume that there is a linear dependency between the monomials in P d(1, N2, . . . , Nm), i.e.,
there is a non-trivial polynomial Q(X ′1, X2, . . . , Xm) that is equal to a non-trivial linear combina-
tion of the monomials from P d(1, N2, . . . , Nm) and Q(X ′1, X2, . . . , Xm) = 0 on C ′.

Case 1 : X ′1 does not occur in Q. So, there is a linear dependency between the monomials in
P d(N2, . . . , Nm) with variables in {X2, . . . , Xm}. Hence, there is a linear dependency between the
monomials in P d(N1, . . . , Nm) with variables in {X1, . . . , Xm} and C is not VCDΨ-maximum.

Case 2 : X ′1 occurs in Q(X ′1, X2, . . . , Xm). We convert Q to Q′ as follows: for each monomial
X ′1X

ni1
i1
· · ·Xnit

it
in Q(X ′1, X2, . . . , Xm) with t < d, replace X ′1 with a polynomial of degree n1

that interpolates ϕ1 on X1. Note that 0 < n1 ≤ N1, because by our assumption ϕ1 is non-constant.
The result of this conversion is a polynomial Q′(X1, . . . , Xm) that can be expressed as a linear
combination of the monomials in P d(N1, . . . , Nm) and furthermore Q′(X1, . . . , Xm) = 0 on C.

Now, we show that Q′(X1, . . . , Xm) is a non-trivial polynomial. Consider one of the longest
monomials X ′1X

ni1
i1
· · ·Xnit

it
that appear in Q. Since Q is non-trivial, there is at least one such

monomial. LetR(X1) = an1X
n1
1 +an1−1X

n1−1
1 + · · ·+a0, where ai ∈ R for i ≤ n1 and an1 6= 0,

be an interpolating polynomial for ϕ1, that is, R(x) = ϕ1(x) for all 0 ≤ x ≤ N1. Replacing X ′1 in
X ′1X

ni1
i1
· · ·Xnit

it
with R(X1) results in the following polynomial

R(X1)X
ni1
i1
· · ·Xnit

it
= (an1

Xn1
1 + an1−1X

n1−1
1 + · · ·+ a0)X

ni1
i1
· · ·Xnit

it

= an1
Xn1

1 X
ni1
i1
· · ·Xnit

it
+ an1−1X

n1−1
1 X

ni1
i1
· · ·Xnit

it
+ · · ·+ a0X

ni1
i1
· · ·Xnit

it
.

Since X ′1X
ni1
i1
· · ·Xnit

it
is one of the longest monomials of this form in Q, an1X

n1
1 X

ni1
i1
· · ·Xnit

it
cannot be canceled out in Q′. Hence, Q′(X1, . . . , Xm) is non-trivial and there is a linear depen-
dency between the monomials in P d(N1, . . . , Nm) with variables in {X1, . . . , Xm}. Therefore, C
cannot be VCDΨ-maximum.

Lemma 9 may be of interest beyond the study of VCDΨ∗ , as it applies to a broad class of notions
of VC-dimension. As an immediate corollary we obtain

Lemma 10 Let C be VCDΨ∗-maximum and let ϕt : Xt → {0, 1} be a non-constant mapping, for
some t ∈ [m], and ϕt = (id1, . . . , idt−1, ϕt, idt+1, . . . , idm). Then ϕt(C) is VCDΨ∗-maximum of
dimension VCDΨ∗(C).

3. The mapping 1− idt is only needed to make Ψ′t a spanning family.

7
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The proof of the following lemma is not quite as obvious and thus can be found in the Appendix.

Lemma 11 Let C be a VCDΨ∗-maximum class and let ϕ = (ϕ1, . . . , ϕm) be a tuple of non-
constant mappings such that each ϕi is either the identity mapping on Xi or ϕi : Xi → {0, 1}.
Then ϕ(C) is also a VCDΨ∗-maximum class of dimension VCDΨ∗(C).

It is obvious that if one of the ϕi’s is a constant mapping, then ϕ(C) is not maximum because it
contains a constant column of 0s or 1s. Thus we obtain the following corollary.

Corollary 12 Let C be VCDΨ∗-maximum and ϕ = (ϕ1, . . . , ϕm) a tuple of mappings ϕi : Xi →
{0, 1}. Then ϕ(C) is VCD-maximum of dimension VCDΨ∗(C) iff ϕi is non-constant for all i.

In the binary case, restrictions and reductions of maximum classes are again maximum Welzl
(1987). For the multi-label case, the corresponding result is known for restrictions.

Theorem 13 (Gurvits, 1997) Let Ψi, 1 ≤ i ≤ m, be a spanning family of mappings ψi : Xi →
{0, 1}, and Ψ = Ψ1 × · · · × Ψm. Let C be VCDΨ-maximum with VCDΨ(C) = d, and Y ⊆ X
with |Y |≥ d. Then C|Y is VCDΨ-maximum with VCDΨ(C|Y ) = d.

One of our core results is that a reduction of a VCDΨ∗-maximum class is also VCDΨ∗-maximum.
Before proving this claim, we show that for any VCDΨ∗-maximum class C, each concept c ∈
C −Xt, for all t ∈ [m], either has a unique extension in C or has all possible extensions in C.

Lemma 14 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = m − 1. Let t ∈ [m] and
c ∈ C −Xt. Then |{c ∈ C | c−Xt = c}|∈ {1, Nt + 1}.

Proof It suffices to prove the claim for t = m. For Nm = 1 there is nothing to show. Thus let
Nm ≥ 2. We show that if there is a concept c ∈ C − Xm that has more than one but fewer than
Nm + 1 extensions to concepts in C, then C is not VCDΨ∗-maximum. The idea is to show that
there is a tuple of non-constant mappings that transform C to a class that is not VCDΨ∗-maximum
of dimension m− 1. Then, by Lemma 11, C is not VCDΨ∗-maximum.

Let 1 ≤ k < Nm. Suppose there is some c ∈ C−Xm such that |{c ∈ C | c−Xm = c}|= k+1.
Let c0, . . . , ck ∈ C such that ci 6= cj and ci −Xm = cj −Xm = c, for all i, j ∈ {0, . . . , k} with
i 6= j. W.l.o.g., let ci(Xm) = i for i ∈ {0, . . . , k}. Further, for i ∈ [m− 1], let c(Xi) = li.

Since k < Nm, we have k + 1 ∈ Xm \ {0, . . . , k}. Let cnew = c ∪ {(Xm, k + 1)} and
Cnew = C ∪ {cnew}. C is VCDΨ∗-maximum of dimension m − 1, so Cnew shatters X . Thus,
there is a tuple ψ = (ψ1, . . . , ψm) of mappings, where ψi : Xi → {0, 1} for all i ∈ [m], and
ψ(Cnew) = {0, 1}m.

Note that cnew − Xm = c and thus ψ(cnew)|{X1,...,Xm−1}= ψ(ci)|{X1,...,Xm−1} for all i ∈
{0, . . . , k}. Let ψ(cnew)|{X1,...,Xm−1}= (p1, . . . , pm−1), where pi ∈ {0, 1} for all i ∈ [m − 1]. If
ψm(k+ 1) = ψm(i) for some i ∈ {0, . . . , k}, then ψ(cnew) = ψ(ci) and consequently, ψ(Cnew) =
ψ(C). This means that X is shattered by C which is not possible, because VCDΨ∗(C) = m − 1.
So, ψm(k+1) 6= ψm(i), for all i ∈ {0, . . . , k}. W.l.o.g., assume that ψm(k+1) = 1 and ψm(i) = 0
for all i ∈ {0, . . . , k}. So,

ψm(x) =


1 if x = k + 1
0 if x ∈ {0, . . . , k}
0 or 1 if x ∈ Xm \ {0, . . . , k, k + 1}.
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and ψ(cnew) = (p1, . . . , pm−1, 1). Consequently, ψ(C) = {0, 1}m \ {(p1, . . . , pm−1, 1)}.
We show that changing ψm to ψ′m as follows will not affect ψ(Cnew) or ψ(C). Let

ψ′m(x) =

{
1 if x = k + 1
0 if x ∈ Xm \ {k + 1}.

Let ψ′ = (ψ1, . . . , ψm−1, ψ
′
m). We claim that ψ′(C) = ψ(C) = {0, 1}m \ {(p1, . . . , pm−1, 1)}. It

is obvious that, for any q ∈ Xm, ψ′m(q) = 1 implies ψm(q) = 1. Thus (p1, . . . , pm−1, 1) /∈ ψ′(C)
follows from (p1, . . . , pm−1, 1) /∈ ψ(C). By Corollary 12, ψ′(C) is a VCD-maximum class with
VCD(ψ′(C)) = m − 1. So, |ψ′(C)|= 2m − 1 and consequently, ψ′(C) = ψ(C) = {0, 1}m \
{(p1, . . . , pm−1, 1)}. Thus, we fix the tuple of mappings ψ = (ψ1, . . . , ψm) for the rest of the proof
and we can choose ψm to be

ψm(x) =

{
1 if x = k + 1
0 if x ∈ Xm \ {k + 1}.

and we still have
ψ(C) = {0, 1}m \ {(p1, . . . , pm−1, 1)}. (1)

In particular, for any concept c ∈ C, we obtain

if ψ(c)|{X1,...,Xm−1}= (p1, . . . , pm−1) then c(Xm) 6= k + 1 . (2)

We define ψ0 = (ψ1, . . . , ψm−1, ψ
0
m) and ψ1 = (ψ1, . . . , ψm−1, ψ

1
m) with

ψ0
m(x) =

{
1 if x ∈ {0, k + 1}
0 if x ∈ Xm \ {0, k + 1} and ψ1

m(x) =

{
1 if x ∈ {1, k + 1}
0 if x ∈ Xm \ {1, k + 1}.

Claim. (See Appendix for proof of Claim.)

1. ψ0(C) = {0, 1}m \ {(r1, . . . , rm−1, 0)}, for some (r1, . . . , rm−1) ∈ {0, 1}m−1 satisfying
(p1, . . . , pm−1) 6= (r1, . . . , rm−1).

2. ψ1(C) = {0, 1}m \ {(s1, . . . , sm−1, 0)}, for some (s1, . . . , sm−1) ∈ {0, 1}m−1 satisfying
(p1, . . . , pm−1) 6= (s1, . . . , sm−1).

3. (r1, . . . , rm−1) 6= (s1, . . . , sm−1) for the (r1, . . . , rm−1), (s1, . . . , sm−1) as in the above two
statements.

To finish the proof we need to show that there is a tuple of non-constant mappings that maps C
to a class that is not VCDΨ∗-maximum of dimension m− 1. For this purpose, we change ψm in ψ
to be the identity mapping on Xm and define a new tuple of mappings ψ′′ = (ψ1, . . . , ψm−1, idm).
Note that

ψ′′(c)|{X1,...,Xm−1}= ψ(c)|{X1,...,Xm−1} for all c ∈ C. (3)

Let C ′′ = ψ′′(C). We show that C ′′ is not VCDΨ∗-maximum of dimension m − 1. Assume
that C ′′ is VCDΨ∗-maximum with VCDΨ∗(C

′′) = m−1. By Theorem 13, C ′′|{X1,...,Xm−1} is also
VCDΨ∗-maximum with VCDΨ∗(C

′′|{X1,...,Xm−1}) = m − 1. Thus C ′′|{X1,...,Xm−1}= {0, 1}m−1

and, in particular, {(p1, . . . , pm−1), (r1, . . . , rm−1), (s1, . . . , sm−1)} ⊆ C ′′|{X1,...,Xm−1}.
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Since C ′′ is maximum of VCDΨ∗ m− 1, by Corollary 7, |C ′′|= Φm−1(

m−1︷ ︸︸ ︷
1, . . . , 1, Nm).

Now, we count the maximum number of concepts that can exist in C ′′. First, note that (2)
and (3) imply that for any concept c ∈ C ′′ with c|{X1,...,Xm−1}= (p1, . . . , pm−1), c(Xm) 6=
k + 1. Thus (p1, . . . , pm−1) has at most Nm extensions in C ′′. Second, note that (r1, . . . , rm−1)
and (s1, . . . , sm−1) each have at most 2 extensions in C ′′ (namely extensions with 0 and k + 1,
and extensions with 1 and k + 1, respectively), because otherwise (r1, . . . , rm, 0) ∈ ψ0(C) or
(s1, . . . , sm, 0) ∈ ψ1(C), which contradicts Claims 1 or 2, respectively. Third, by Claims 1, 2, and
3, there are exactly 2m−1− 3 binary vectors remaining in {0, 1}m−1. Each one of these has at most
Nm+1 extensions inC ′′. In total, |C ′′|≤ (2m−1−3)×(Nm+1)+Nm+2+2 < Φm−1(1, . . . , 1, Nm)
(see Appendix for derivation).

Hence C ′′ = ψ′′(C) is not VCDΨ∗-maximum of dimension m − 1. Therefore, by Lemma 11,
the class C is not VCDΨ∗-maximum either.

We now generalize Lemma 14 as follows.

Theorem 15 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d. Let t ∈ [m] and c ∈
C −Xt. Then |{c ∈ C | c−Xt = c}|∈ {1, Nt + 1}.

Proof Note that, by definition, m ≥ d.
For m = d, we obtain VCDΨ∗(C) = m and thus C =

∏m
i=1Xi. So, for any t ∈ [m], and any

concept c ∈ C −Xt, c has all possible extensions to concepts in C. For m = d + 1, the statement
of the theorem coincides with Lemma 14 and is thus proven. So suppose m > d+ 1.

Consider a VCDΨ∗-maximum class C ⊆
∏m
i=1Xi with VCDΨ∗(C) = d. It suffices to prove

the statement of the theorem for t = 1. So, let 1 ≤ k < N1, and suppose there is some c ∈ C −X1

such that |{c ∈ C | c − X1 = c}|= k + 1. Let c0, . . . , ck ∈ C such that ci 6= cj and ci − X1 =
cj −X1 = c, for all i, j ∈ {0, . . . , k} with i 6= j. W.l.o.g., let ci(X1) = i for i ∈ {0, . . . , k}.

Let cnew = c ∪ {(X1, k + 1)} and Cnew = C ∪ {cnew}. C is VCDΨ∗-maximum of dimen-
sion d, so Cnew shatters a subset of the instance space of size d + 1, including X1. W.l.o.g., let
{X1, . . . , Xd+1} be shattered by Cnew. That is, there is a tuple of mappings ψ = (ψ1, . . . , ψm)
where ψi : Xi → {0, 1}, for all i ∈ [m] and ψ(Cnew)|{X1,...,Xd+1}= {0, 1}

d+1.
We show that {X1, . . . , Xd+1} is shattered by C, too. By Theorem 13, C|{X1,...,Xd+1} is

VCDΨ∗-maximum of dimension d. Since, ci|{X1,...,Xd+1}∈ C|{X1,...,Xd+1}, for all i ∈ {0, . . . , k},
by Lemma 14, ci|{X2,...,Xd+1} has either a unique or all extensions to concepts in C|{X1,...,Xd+1}.
Since c has more than one extension to concepts in C, we obtain that c|{X2,...,Xd+1} has more than
one extension—and thus all possible extensions—to concepts in C|{X1,...,Xd+1}. In particular, there
is a concept c′ ∈ C|{X1,...,Xd+1}, such that c′|{X2,...,Xd+1}= c|{X2,...,Xd+1}, and c′(X1) = k +
1. Equivalently, cnew|{X1,...,Xd+1}∈ C|{X1,...,Xd+1}, and thus C|{X1,...,Xd+1}= Cnew|{X1,...,Xd+1}.
Hence, ψ(C|{X1,...,Xd+1}) = ψ(Cnew|{X1,...,Xd+1}) = {0, 1}d+1 and C shatters {X1, . . . , Xd+1} in
contradiction to VCDΨ∗(C) = d.

Hence, for a VCDΨ∗-maximum class C, it does not make any difference whether the reduction
CXt is defined as the set of all concepts in C −Xt that have more than one extension in C, or the
set of all concepts in C−Xt that have all Nt + 1 extensions in C. Formally, we define CXt = {c ∈
C−Xt | c×Xt ⊆ C}. Then the reduction of a VCDΨ∗-maximum class is also VCDΨ∗-maximum:

10
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Theorem 16 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d. Then CXt is VCDΨ∗-
maximum with VCDΨ∗(C

Xt) = d− 1, for any t ∈ [m].

For any set Y ⊆ X , we extend the definition of CY from the binary case to the multi-label
case in the obvious way. It should be noted that CY is well-defined, as (CXi)Xj = (CXj )Xi for all
i, j ∈ [m], as in the binary case.

Proposition 17 For any Xi, Xj with i 6= j, (CXi)Xj = (CXj )Xi .

We now closely follow the technique that Floyd and Warmuth (1995) use to show that any binary
VCD-maximum class has a sample compression scheme of the size of its VC-dimension.

Corollary 18 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d < m and let Y ⊆
{X1, . . . , Xm} with |Y |= d. Then VCDΨ∗(C

Y ) = 0 and CY consists of a single concept.

For any VCDΨ∗-maximum class C with VCDΨ∗(C) = d < m and any subset Y ⊆ X with
|Y |= d, we denote by cY,C the single concept in CY . For Y = {Xi1 , . . . , Xid}, the concept
cY,C ∈ CY can be extended in

∏d
j=1(Nij + 1) ways to concepts in C. In particular, for any tuple

(ni1 , . . . , nid) ∈
∏d
j=1Xij , cY,C∪(ni1 , . . . , nid) ∈ C. Thus, any set S = {(Xi1 , ni1), . . . , (Xid , nid)}

with X(S) = Y corresponds to the unique concept cY,C ∪ S = cX(S),C ∪ S in C.

Definition 19 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d < m. Let S with |S|= d
be a sample consistent with some concepts in C and cX(S),C be the single concept in CX(S). S is
called a compression set for the concept cS,C ∈ C where cS,C = (cX(S),C) ∪ S. The concept cS,C
is called the decompression set for the sample S in the class C.

In order to have a compression scheme of size d, any sample of size at least d+1 consistent with
some concepts in C should have a compression set of size at most d. In other words, we need to
show that any concept in C|Y has a compression set of size at most d, where Y ⊆ X with |Y |> d.
Since C is VCDΨ∗-maximum, C|Y is VCDΨ∗-maximum and Definition 19 applies to C|Y , too.

Theorem 20 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d. Then for each concept
c ∈ C, there is a compression set S of exactly d examples such that c = cS,C .

Corollary 21 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d. Then C has a sample
compression scheme of size d.

An inspection of the proof will show that Corollary 21 also holds if X is infinite. In that case,
a class is called VCDΨ∗-maximum of dimension d, if all of its restrictions to finite subsets of X of
size at least d are VCDΨ∗-maximum of dimension d.

5. Sample compression for classes of VCDΨ∗ 1

For binary concept classes, compression schemes of size d for maximum classes of VC-dimension
d, like the VC Scheme proposed by Floyd and Warmuth (1995), immediately yield compression

11
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schemes of size 1 for all classes of VC-dimension 1. This is because every binary class of VC-
dimension 1 is contained in a binary VCD-maximum class of VC-dimension 1 (Welzl and Woeg-
inger, 1987). In other words, in the binary case, every maximal class of VC-dimension 1 is VCD-
maximum. The term “maximal” refers to a class whose VC-dimension increases if any concept
is added to it. In the multi-label case, a concept class is called VCDΨ-maximal w.r.t. a family of
mappings Ψ = Ψ1×· · ·×Ψm if adding any new concept to the class increases its VCDΨ-dimension.

An obvious idea for proving that compression schemes of size 1 exist for multi-label classes C
with VCDΨ∗(C) = 1 would be to prove that the latter are contained in VCDΨ∗-maximum classes
of dimension 1, and then to apply Corollary 21. However, this approach is fruitless, since there
is a VCDΨ∗-maximal class C such that VCDΨ∗(C) = 1 and C is not VCDΨ∗-maximum. As an
example, consider the class Ĉ ⊂ {0, 1, 2} × {0, 1, 2} given by Ĉ = {(0, 0), (1, 1), (2, 2)}. Clearly,
VCDΨ∗(Ĉ) = 1 and Ĉ is too small to be VCDΨ∗-maximum. However, it is VCDΨ∗-maximal.

It is easy to see that, considering the family of mappings ΨG1 × . . .×ΨGm used for computing
the Graph-dimension (see Section 2), the class Ĉ is still VCDΨG1

×...×ΨGm
-maximal. So, even

when restricting ourselves to some special families of mappings studied in the literature previously,
classes of dimension 1 do not necessarily maintain the same structural properties as in the binary
case. We will prove that, despite the changes in structural properties when compared to the binary
case, every multi-label class C with VCDΨ∗(C) = 1 has a sample compression scheme of size 1.

A sample S is a teaching set for a concept c in a class C, if c is the only concept from C that is
consistent with S. The collection of all teaching sets for c in C is denoted TS(c, C). For simplicity,
if S is a teaching set for c with respect to C, we also call X(S) a teaching set for c with respect
to C, since the labels of examples from S are uniquely determined by X(S) and c. The teaching
dimension of c in C is TD(c, C) = min{|S|: S ∈ TS(c, C)}. The teaching dimension of C is
TD(C) = maxc∈C TD(c, C) (Goldman and Kearns, 1995; Shinohara and Miyano, 1991).

Lemma 22 Let VCDΨ∗(C) = 1. Then for any Xi, Xj ∈ X with i 6= j, there is at most one
concept in C|{Xi,Xj} with teaching dimension 2 w.r.t. C|{Xi,Xj}.

This result does not generalize to the case when VCDΨ∗(C) = 2, not even for binary classes.
For example, the VCD-maximum class of VC-dimension 2 over 3 instances that corresponds to
the class of all sets of size at most 2 has 4 concepts in C|{X1,X2,X3}= C of teaching dimen-
sion 3, namely the empty concept (0, 0, 0) and the singletons (1, 0, 0), (0, 1, 0), and (0, 0, 1). For
VCDΨ∗(C) = 1, Lemma 22 will help us to compress a set of two examples to one example.

Definition 23 Let C be a concept class and let S be a sample consistent with some concept in C.
For Xi, Xj ∈ X(S) with i 6= j, we say

(1) (Xi, li) ∈ S explicitly implies (Xj , lj) ∈ S if {(Xi, li)} ∈ TS(S|{Xi,Xj}, C|{Xi,Xj}).
(2) (Xi, li) ∈ S implicitly implies (Xj , lj) ∈ S if TS(S|{Xi,Xj}, C|{Xi,Xj}) = {S|{Xi,Xj}}.

(Xi, li) ∈ S implies (Xj , lj) ∈ S if it explicitly or implicitly implies (Xj , lj). Moreover, (Xi, li)
uniquely implies (Xj , lj) if for any sample S′ ⊇ {(Xi, li), (Xj , l

′)}, l′ 6= lj , consistent with some
concept in C, (Xi, li) does not imply (Xj , l

′) ∈ S′. An example (Xi, li) ∈ S is called a representa-
tive for S, if every example in S is uniquely implied by (Xi, li).

Using the above definition, we obtain a simple lemma.

Lemma 24 Let S be a sample consistent with some concept in C and (Xi, li), (Xj , lj) ∈ S, such
that (Xi, li) implies (Xj , lj). If VCDΨ∗(C) = 1 then (Xi, li) uniquely implies (Xj , lj).
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Corollary 25 Let S be a sample consistent with some concept in C and (Xi, li), (Xj , lj) ∈ S. If
VCDΨ∗(C) = 1 then at least one of the following statements is true: (i) (Xi, li) explicitly implies
(Xj , lj), (ii) (Xj , lj) explicitly implies (Xi, li), (iii) (Xi, li) implicitly implies (Xj , lj) and (Xj , lj)
implicitly implies (Xi, li).

Example 1 Consider the class in Table 2. For S = {(X1, 0), (X2, 0), (X3, 0)}, (X2, 0) explic-
itly implies (X1, 0) and implicitly implies (X3, 0). For S′ = {(X1, 1), (X2, 1), (X3, 0)}, (X1, 1)
explicitly implies (X2, 1); (X2, 1) explicitly implies (X3, 0); (X1, 1) explicitly implies (X3, 0).

c ∈ C X1 X2 X3

c1 0 0 0

c2 0 0 1

c3 0 1 0

c4 1 1 0

Table 2: Concept class used
in Example 1.

So far, we can compress two examples to one example by using
unique implication. However, we need a compression set for any
sample consistent with some concept in a concept class. To do so,
we first show that the relation of implication is “partially transitive”.

Lemma 26 Let VCDΨ∗(C) = 1, and let S be a sample consistent
with some concept in C with e1, e2, e3 ∈ S. If e1 explicitly implies
e2 and e2 explicitly implies e3, then e1 explicitly implies e3. If e1

explicitly implies e2 and e2 implicitly implies e3, then e1 implies e3.
In particular, in either case, e1 uniquely implies e3.

Theorem 27 Let VCDΨ∗(C) = 1. Then any sample S consistent
with some concept in C has a representative.

Proof For |S|= 1, there is nothing to show, and for |S|= 2, Corollary 25 proves the claim.
Let S = {e1, . . . , ek}, with k ≥ 3. We find a representative r of S inductively as follows. In

step 1, let r = e1. In step i, for 2 ≤ i ≤ k, test whether r implies ei in C|{X(r),X(ei)}. If yes, don’t
change r. If no, then, if ei explicitly implies r in C|{X(r),X(ei)} then r = ei.

Consider step i for i ≥ 2. By Corollary 25, either r implies ei or ei explicitly implies r. If
r implies ei, then r uniquely implies ei and thus r is still a representative for {e1, . . . , ei}. Let ei
explicitly imply r. Let 1 ≤ j < i. If r explicitly implies ej , then by Lemma 26, ei explicitly and
thus uniquely implies ej . If r implicitly implies ej , then by Lemma 26, ei uniquely implies ej . So,
ei uniquely implies any example in {e1, . . . , ei}, i.e., ei is a representative for {e1, . . . , ei}.

Corollary 28 Let VCDΨ∗(C) = 1. Then C has a sample compression scheme of size 1.

For example, consider the class in Table 2. Decompression of the set {(X2, 1)} here would
yield c3, since (X2, 1) explicitly implies (X3, 0) and implicitly implies (X1, 0).

The assumption that X is finite is not used in the proof of Corollary 28, so that the latter applies
also to infinite concept classes of VCDΨ∗-dimension 1. Further, all label mappings used to verify
Corollary 28 are of the form used for defining the Graph-dimension, that is, for each instance exactly
one value is mapped to 1. Hence all results in Section 5 apply also to classes of Graph-dimension
1. In particular, every class of Graph-dimension 1 has a compression scheme of size 1.
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Appendix A. Proofs of Results Proven by Gurvits (1997)

For convenience, we include proofs of some of Gurvits’s results, translated into our notation.
To prove Theorem 6, Gurvits first observes the following.

Lemma 29 (Gurvits, 1997) Let Ψi be a spanning family of mappings onXi for all i ∈ [m] and Ψ =
Ψ1×· · ·×Ψm. Then Ψ is spanning onX1×· · ·×Xm, where (ψ1, ψ2, . . . , ψm)(x1, x2, . . . , xm) =
ψ1(x1) ·ψ2(x2) · . . . ·ψm(xm) for (ψ1, ψ2, . . . , ψm) ∈ Ψ and (x1, x2, . . . , xm) ∈ X1×· · ·×Xm.

Theorem 6 (Gurvits, 1997) Let Ψi, 1 ≤ i ≤ m, be a spanning family of mappings ψi : Xi → {0, 1},
and Ψ = Ψ1 × · · · × Ψm. If VCDΨ(C) = d then the monomials from P d(N1, . . . , Nm) span the
vector space R|C|.
Proof We show that any vector from R|C| can be expressed as a linear combination of monomials
from P d(N1, . . . , Nm).

By Lemma 29, we know that if Ψi is spanning on Xi, then ΠΨ is spanning on X1 × · · · ×Xm.
In particular, any vector from R|C| can be expressed as a linear combination of products ψ1(X1) ·
. . . · ψm(Xm), ψi ∈ Ψi.

Consider any of these products ψ1(X1) · . . . · ψm(Xm). Let ψ = (ψ1, . . . , ψm), X ′i = ψi(Xi),
for all i ∈ [m], and C ′ = ψ(C). C ′ is a binary class over m binary instances and, by Definition 1,
VCD(C ′) ≤ VCDΨ(C) = d. By Theorem 5, the monomial X ′1 · . . . · X ′m can be expressed as a
linear combination of short products

{X ′i1 · . . . ·X
′
ik

: 1 ≤ i1 < · · · < ik ≤ m and k ≤ d}.

It follows that ψ1(X1) · . . . · ψm(Xm) can be expressed as a linear combination of short products
{ψi1(Xi1) · . . . · ψik(Xik) : k ≤ d}.

We can use interpolation to represent any mapping ψi(Xi) by a polynomial of degree at most
Ni, such that ψi(Xi) = aNiX

Ni
i + aNi−1X

Ni−1
i + · · · + a0. Replacing each ψij , 1 ≤ j ≤ k in

a short product ψi1(Xi1) · . . . · ψik(Xik) with the interpolating polynomial, we can express it as a
linear combination of monomials in

{Xni1
i1
· · ·Xnik

ik
: k ≤ d, and 0 ≤ nit ≤ Nit for all t, 1 ≤ t ≤ k}.

So, any vector from R|C| can be expressed as a linear combination of monomials inP d(N1, . . . , Nm)
and hence P d(N1, . . . , Nm) spans the vector space R|C|.
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Theorem 13 (Gurvits, 1997) Let Ψi, 1 ≤ i ≤ m, be a spanning family of mappings ψi : Xi →
{0, 1}, and Ψ = Ψ1 × · · · × Ψm. Let C be VCDΨ-maximum with VCDΨ(C) = d, and Y ⊆ X
with |Y |≥ d. Then C|Y is VCDΨ-maximum with VCDΨ(C|Y ) = d.
Proof Let Y = {Xi1 , . . . , Xik} and assume that there is a linear dependency between some mono-
mials in P d(Ni1 , . . . , Nik) on C|Y . Since P d(Ni1 , . . . , Nik) ⊆ P d(N1, . . . , Nm), there should be
a linear dependency between some monomials from P d(N1, . . . , Nm) on C|Y . By the definition of
restriction, linear dependency on C|Y results in a linear dependency on C. So, the monomials from
P d(N1, . . . , Nm) are linearly dependent onC. This contradicts the fact thatC is VCDΨ-maximum,
and so the monomials from P d(Ni1 , . . . , Nik) are independent on C|Y . Therefore,

size(C|Y ) ≥ |P d(Ni1 , . . . , Nik)|= Φd(Ni1 , . . . , Nik).

On the one hand, VCDΨ(C|Y ) ≤ d, and by Theorem 6, the monomials from P d(Ni1 , . . . , Nik)
span the vector space Rsize(C|Y ). So, size(C|Y ) ≤ |P d(Ni1 , . . . , Nik)|= Φd(Ni1 , . . . , Nik). Hence,
size(C|Y ) = Φd(Ni1 , . . . , Nik). Considering the size of C|Y , VCDΨ(C|Y ) cannot be smaller than
d. Hence C|Y is a VCDΨ-maximum class of dimension d = VCDΨ(C).

Appendix B. Proofs Omitted From Section 4

B.1. Proof of Lemma 11

Lemma 11 LetC be a VCDΨ∗-maximum class and letϕ = (ϕ1, . . . , ϕm) be a tuple of non-constant
mappings such that each ϕi is either the identity mapping on Xi or ϕi : Xi → {0, 1}. Then ϕ(C)
is also a VCDΨ∗-maximum class of dimension VCDΨ∗(C).
Proof W.l.o.g., let ϕi : Xi → {0, 1}, for all 1 ≤ i ≤ k and ϕi, k + 1 ≤ i ≤ m, be the
identity mapping on Xi. In other words, ϕ = (ϕ1, . . . , ϕk, idk+1, . . . , idm). Also, let ϕt =
(id1, . . . , idt−1, ϕt, idt+1, . . . , idm), for 1 ≤ t ≤ k. It is easy to see that ϕ(C) = ϕk(· · ·ϕ1(C)).
Applying Lemma 10 to each ϕt repeatedly from t = 1 to t = k proves the claim.

B.2. Missing Parts From the Proof of Lemma 14

Claim.

1. ψ0(C) = {0, 1}m \ {(r1, . . . , rm−1, 0)}, for some (r1, . . . , rm−1) ∈ {0, 1}m−1 satisfying
(p1, . . . , pm−1) 6= (r1, . . . , rm−1).

2. ψ1(C) = {0, 1}m \ {(s1, . . . , sm−1, 0)}, for some (s1, . . . , sm−1) ∈ {0, 1}m−1 satisfying
(p1, . . . , pm−1) 6= (s1, . . . , sm−1).

3. (r1, . . . , rm−1) 6= (s1, . . . , sm−1) for the (r1, . . . , rm−1), (s1, . . . , sm−1) as in the above two
statements.

Proof of Claim 1. It is clear that ψ0
m is a non-constant mapping. Note that ψ and ψ0 differ only

in the mth mapping. Thus,

ψ0(c)|{X1,...,Xm−1}= ψ(c)|{X1,...,Xm−1} for all c ∈ C. (4)
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By Corollary 12, ψ0(C) is VCD-maximum with VCD(ψ0(C)) = m− 1. So, |ψ0(C)|= 2m − 1.
Assume ψ0(C) = {0, 1}m \ {(r1, . . . , rm−1, 1)}, where ri ∈ {0, 1} for all i ∈ [m − 1]. We

show that (r1, . . . , rm−1, 1) 6= (p1, . . . , pm−1, 1) and also (r1, . . . , rm−1, 1) /∈ ψ(C). That is,
|ψ(C)|≤ 2m − 2 which is a contradiction.

First, it is obvious that ψ0(c0) = ψ0(cnew) = (p1, . . . , pm−1, 1), and thus (p1, . . . , pm−1, 1) ∈
ψ0(C). So,

(r1, . . . , rm−1, 1) 6= (p1, . . . , pm−1, 1). (5)

Second, ψm(x) = 1 implies x = k + 1 and thus also ψ0
m(x) = 1. Having this and (4), we

conclude that (r1, . . . , rm−1, 1) ∈ ψ(C) implies (r1, . . . , rm−1, 1) ∈ ψ0(C). So,

(r1, . . . , rm−1, 1) /∈ ψ(C). (6)

From (5) and (6) we conclude that ψ(C) ⊆ {0, 1}m \ {(p1, . . . , pm−1, 1), (r1, . . . , rm−1, 1)}
which contradicts (1). Hence, our initial assumption is false, so that we obtain ψ0(C) = {0, 1}m \
{(r1, . . . , rm−1, 0)}, where ri ∈ {0, 1} for all i ∈ [m − 1]. So, for any concept c ∈ C, ψ0(c) 6=
(r1, . . . , rm−1, 0).

To establish Claim 1, it remains to show that (p1, . . . , pm−1) 6= (r1, . . . , rm−1). By the defini-
tion of ψ0

m, for any concept c ∈ C with ψ0(c)|{X1,...,Xm−1}= (r1, . . . , rm−1), either c(Xm) = 0

or c(Xm) = k + 1. From (4) we then have, for any concept c ∈ C with ψ(c)|{X1,...,Xm−1}=
(r1, . . . , rm−1), either c(Xm) = 0 or c(Xm) = k + 1. Since c1(Xm) = 1, we conclude that
ψ(c1)|{X1,...,Xm−1} 6= (r1, . . . , rm−1). Hence, (p1, . . . , pm−1) 6= (r1, . . . , rm−1). � (Claim 1.)

Proof of Claim 2. By the same arguments as used for establishing Claim 1. � (Claim 2.)

Proof of Claim 3. Equation (1) implies (r1, . . . , rm−1, 0) ∈ ψ(C). So, there is some c′ ∈ C with
ψ(c′) = (r1, . . . , rm−1, 0), i.e., ψ(c′)|{X1,...,Xm−1}= (r1, . . . , rm−1) and ψm(c′(Xm)) = 0. Also,
as shown in the proof of Claim 1, for any c ∈ C with ψ(c)|{X1,...,Xm−1}= (r1, . . . , rm−1), either
c(Xm) = 0 or c(Xm) = k + 1. So, c′(Xm) = 0 since ψm(k + 1) = 1. Thus, ψ1

m(c′(Xm)) =
ψ1
m(0) = 0. Also, from the analogue of (4) for ψ1, ψ(c′)|{X1,...,Xm−1}= ψ1(c′)|{X1,...,Xm−1}.

Hence (r1, . . . , rm−1, 0) ∈ ψ1(C). Therefore, (r1, . . . , rm−1) = (s1, . . . , sm−1) would imply
(s1, . . . , sm−1, 0) ∈ ψ1(C) which contradicts Claim 2. Consequently, we obtain (s1, . . . , sm−1) 6=
(r1, . . . , rm−1). � (Claim 3.)
Details for the derivation of |C ′′|< Φm−1(1, . . . , 1, Nm) near the end of the proof of Lemma 14:

|C ′′| ≤ (2m−1 − 3)× (Nm + 1) +Nm + 2 + 2

= 2m−1Nm − 3Nm − 3 + 2m−1 +Nm + 4 = 2m−1 + 2m−1Nm − 2Nm + 1

< 2m−1 + 2m−1Nm −Nm (since Nm ≥ 2)

= Φm−1(1, . . . , 1, Nm).

B.3. Proof of Results Concerning Reductions of Maximum Classes

Proposition 17 For any Xi, Xj with i 6= j, (CXi)Xj = (CXj )Xi .
Proof

c ∈ (CXi)Xj ⇔ c ∪ {(Xj , l)} ∈ CXi , for all l ∈ {0, . . . , Nj} ⇔

for each c ∪ {(Xj , l)} ∈ CXi , {c ∪ {(Xj , l)}} ∪ {(Xi, t)} ∈ C, for all t ∈ {0, . . . , Ni} ⇔
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c ∪ {(Xj , l), (Xi, t)} ∈ C for all l ∈ {0, . . . , Nj} and for all t ∈ {0, . . . , Ni} ⇔

c ∪ {(Xi, t)} ∈ CXj , for all t ∈ {0, . . . , Ni} ⇔ c ∈ (CXj )Xi

Theorem 16 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d. Then CXt is VCDΨ∗-
maximum with VCDΨ∗(C

Xt) = d− 1, for any t ∈ [m].
Proof For m = d, the claim is obviously true. So suppose m > d. It suffices to prove the statement
for t = m. We first show that VCDΨ∗(C

Xm) ≤ d− 1. Assume VCDΨ∗(C
Xm) = d, and, w.l.o.g.,

CXm shatters {X1, . . . , Xd}. Let ψ1,m−1 = (ψ1, . . . , ψm−1) be a tuple of non-constant mappings
ψi : Xi → {0, 1} where

ψ1,m−1(CXm)|{X1,...,Xd}= {0, 1}
d

Let ψm : Xm → {0, 1} be a mapping such that

ψm(x) =

{
0 if x = 0
1 if x ∈ Xm \ {0}

and ψ1,m = (ψ1, . . . , ψm−1, ψm). By the definition of reduction, any concept c ∈ CXm has all
Nm + 1 extensions to concepts in C. In particular,

c|{X1,...,Xd}∪{(Xm, 0)} ∈ C|{X1,...,Xd,Xm}

and
c|{X1,...,Xd}∪{(Xm, 1)} ∈ C|{X1,...,Xd,Xm}

So, ψ1,m(C)|{X1,...,Xd,Xm}= {0, 1}
d+1, which contradicts the fact that VCDΨ∗(C) = d. Hence,

VCDΨ∗(C
Xm) ≤ d− 1.

By Theorem 15, each concept c ∈ C − Xm either has a unique extension to concepts in C or
has all Nm + 1 extensions to concepts in C. So,

|C|= |C −Xm|+Nm|CXm |.

Also, by Theorem 13, C −Xm is VCDΨ∗-maximum of dimension d. So,

|CXm | =
1

Nm
(|C|−|C −Xm|)

=
1

Nm
(Φd(N1, . . . , Nm)− Φd(N1, . . . , Nm−1))

=
1

Nm
(Nm +

∑
1≤i≤m−1

NiNm + · · ·+
∑

1≤i1<i2<···<id−1≤m−1

Ni1Ni2 · · ·Nid−1
Nm)

=
1

Nm
(NmΦd−1(N1, . . . , Nm−1))

= Φd−1(N1, . . . , Nm−1)

Since VCDΨ∗(C
Xt) ≤ d−1 and |CXt |= Φd−1(N1, . . . , Nm−1), the reductionCXm is VCDΨ∗-

maximum with VCDΨ∗(C
Xm) = d− 1.
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Corollary 18 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d < m and let Y ⊆
{X1, . . . , Xm} with |Y |= d. Then VCDΨ∗(C

Y ) = 0 and CY consists of a single concept.
Proof Let Y = {Xi1 , . . . , Xid}. By applying Theorem 16 to CY = ((CXi1 ) · · ·)Xid repeatedly,
CY is a VCDΨ∗-maximum class of dimension 0. So, |CY |= 1.

B.4. Proof of Theorem 20 and Corollary 21

To prove Theorem 20, we need two lemmas. We first have to show that any sample S of size d
over Y yields the same set when considering the concept class C and restricting the compression
set corresponding to S to the domain Y , as when considering the concept class C|Y and taking the
compression set corresponding to S.

Lemma 30 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d < m. Let S be a sample
consistent with some concepts in C, with X(S) ⊆ Y ⊆ X , and |X(S)|= d. Then (cS,C)|Y =
cS,C|Y .

Proof W.l.o.g., assume that X(S) = {X1, . . . , Xd}. Clearly, cS,C and cS,C|Y agree on X(S).
Assume that cS,C and cS,C|Y differ on some Xt ∈ Y \ X(S). W.l.o.g., let cS,C(Xd+1) = 0 and
cS,C|Y (Xd+1) = 1. We show that then {X1, . . . , Xd+1} is shattered by C, in contradiction to
VCDΨ∗(C) = d.

Let ψ1,d = (ψ1, . . . ψd) be a tuple of non-constant mappings ψi : Xi → {0, 1}. From Theo-
rem 13, C|{X1,...,Xd} is VCDΨ∗-maximum of dimension d and by Lemma 11, ψ1,d(C|{X1,...,Xd}) =

{0, 1}d. Let ψd+1 : Xd+1 → {0, 1} such that

ψd+1(x) =


0 if x = 0
1 if x = 1
0 or 1 otherwise.

and ψ1,d+1 = (ψ1, . . . , ψd, ψd+1).
On the one hand, because cS,C(Xd+1) = 0, for each labeling ((X1, n1), . . . , (Xd, nd)) ofX(S),

there is a concept c ∈ C, that is consistent with that labeling and fulfills c(Xd+1) = 0. That is, for
each (n1, . . . , nd) ∈ C|{X1,...,Xd}, there is a concept c ∈ C, such that c|{X1,...,Xd}= (n1, . . . , nd)

and c(Xd+1) = 0. Consequently, for each tuple (ψ1(n1), . . . , ψd(nd)) ∈ ψ1,d(C|{X1,...,Xd}) =

{0, 1}d, there is a concept c ∈ C, such that ψ1,d(c|{X1,...,Xd}) = (ψ1(n1), . . . , ψd(nd)) and
c(Xd+1) = 0. So, {{0, 1}d × {0}} ⊆ ψ1,d+1(C|{X1,...,Xd+1}).

On the other hand, because cS,C|Y (Xd+1) = 1, for each labeling ((X1, n1), . . . , (Xd, nd)) of
X(S), there is a concept c ∈ C|Y , that is consistent with that labeling and fulfills c(Xd+1) = 1.
That is, for each (n1, . . . , nd) ∈ C|{X1,...,Xd}, there is a concept c ∈ C|Y , such that c|{X1,...,Xd}=

(n1, . . . , nd) and c(Xd+1) = 1. So, for each tuple (ψ1(n1), . . . , ψd(nd)) ∈ ψ1,d(C|{X1,...,Xd}) =

{0, 1}d, there is a concept c ∈ C|Y , such that ψ1,d(c|{X1,...,Xd}) = (ψ1(n1), . . . , ψd(nd)) and
c(Xd+1) = 1. Thus, {{0, 1}d × {1}} ⊆ ψ1,d+1(C|{X1,...,Xd+1}).

Hence, ψ1,d+1(C|{X1,...,Xd+1}) = {0, 1}d+1 and C shatters a set of d+ 1 instances.
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Next, one needs to establish that, for any sample S of size d − 1 and any instance Xt not
occurring in S, the decompression set for the sample S in the class CXt equals the restriction of the
decompression set for the sample S ∪ {(Xt, i)} in the class C, to X \Xt.

Lemma 31 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d < m. Let t ∈ [m], c ∈ CXt ,
S be a sample consistent with c, such that |X(S)|= d−1 and Si = S∪{(Xt, i)}, for all 0 ≤ i ≤ Nt.
Then cSi,C −Xt = cS,CXt .

Proof W.l.o.g, let t = d and X(S) = {X1, . . . , Xd−1}. Clearly, cSi,C and cS,CXd agree on X(S).
Assume that cS,C and cS,C|Y differ on someXt ∈ X \{X1, . . . , Xd}. W.l.o.g., let cSi,C(Xd+1) = 0
and cS,CXd (Xd+1) = 1. We show that {X1, . . . , Xd+1} is shattered by C, which contradicts the
fact that VCDΨ∗(C) = d.

Let ψ1,d+1 = (ψ1, . . . ψd+1) be a tuple of non-constant mappings ψi : Xi → {0, 1}, such that

ψi(x) =


0 if x = 0
1 if x = 1
0 or 1 otherwise.

From Theorem 13, we obtain that C|{X1,...,Xd} is VCDΨ∗-maximum of dimension d and by
Lemma 11, ψ1,d(C|{X1,...,Xd}) = {0, 1}d.

On the one hand, for all 0 ≤ i ≤ Nd, the fact that cSi,C(Xd+1) = 0 implies, for each la-
beling ((X1, n1), . . . , (Xd, nd)) of X(Si), the existence of a concept c ∈ C that is consistent
with that labeling and fulfills c(Xd+1) = 0. That is, for each tuple (n1, . . . , nd) ∈ C|{X1,...,Xd},
there is a concept c ∈ C, such that c|{X1,...,Xd}= (n1, . . . , nd) and c(Xd+1) = 0. Consequently,
for each tuple (ψ1(n1), . . . , ψd(nd)) ∈ ψ1,d(C|{X1,...,Xd}) = {0, 1}d, there is a concept c ∈ C,
such that ψ1,d(c|{X1,...,Xd}) = (ψ1(n1), . . . , ψd(nd)) and c(Xd+1) = 0. So, {{0, 1}d × {0}} ⊆
ψ1,d+1(C|{X1,...,Xd+1}).

On the other hand, because cS,CXd (Xd+1) = 1, for each labeling ((X1, n1), . . . , (Xd−1, nd−1))

of X(S), there is a concept c ∈ CXd that is consistent with that labeling and fulfills c(Xd+1) = 1.
That is, for each tuple (n1, . . . , nd−1) ∈ C|{X1,...,Xd−1}, there is a concept c ∈ CXd , such that
c|{X1,...,Xd−1}= (n1, . . . , nd−1) and c(Xd+1) = 1. Also, by the definition of reduction, for each c ∈
CXd , c ∪ (i) ∈ C, for all 0 ≤ i ≤ Nd. Consequently, for each tuple (ψ1(n1), . . . , ψd−1(nd−1)) ∈
ψ1,d−1(C|{X1,...,Xd−1}) = {0, 1}d−1, there is some c ∈ CXd , such that ψ1,d−1(c|{X1,...,Xd−1}) =
(ψ1(n1), . . . , ψd−1(nd−1)), c ∪ {(Xd, 0)} ∈ C, c ∪ {(Xd, 1)} ∈ C, and c(Xd+1) = 1. So,
{{0, 1}d−1 × {0, 1} × {1}} = {{0, 1}d × {1}} ⊆ ψ1,d+1(C|{X1,...,Xd+1}).

Hence, ψ1,d+1(C|{X1,...,Xd+1}) = {0, 1}d+1 and C shatters a set of d+ 1 instances.

Now, we are ready to show that for each concept in a VCDΨ∗-maximum class, there exists a
compression set of size VCDΨ∗-dimension of the class.
Theorem 20 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d. Then for each concept
c ∈ C, there is a compression set S of exactly d examples such that c = cS,C .
Proof As Floyd and Warmuth (1995), we do double induction on m and d.

If d = m, then each concept has exactly d examples and is a compression set for itself.
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For any m ≥ 1, if d = 0, the empty set compresses the single concept in C.
For the induction step, assume that the theorem holds for all d′ ≤ d and m′ < m. If m = d,

we know that the theorem holds. So we suppose that m > d. Let c ∈ C − Xm. To show that
all extensions of c to concepts in C have a compression set as claimed, we need to consider two
possible cases.

Case 1: c has a unique extension to a concept in C (and is thus not contained in CXm .) W.l.o.g., let
c ∪ {(Xm, 0)} ∈ C, and for all i ∈ {1, . . . , Nm}, c ∪ {(Xm, i)} /∈ C.

By Theorem 13, C −Xm is VCDΨ∗-maximum of dimension d. So, by induction hypothesis,
for each c ∈ C −Xm there is a compression set S, such that c = cS,C−Xm . By Corollary 18,
S also represents the concept cS,C = cX(S),C ∪ S because cX(S),C is the single concept
in CX(S). We show that S is a compression set for c ∪ {(Xm, 0)}, too. From Lemma 30,
cS,C −Xm = cS,C−Xm , i.e, cS,C −Xm = c. If cS,C(Xm) = i, for some 1 ≤ i ≤ Nm, then
c ∪ {(Xm, i)} ∈ C which contradicts the assumption for Case 1. Hence, cS,C(Xm) = 0, and
consequently S is a compression set for cS,C = c ∪ {(Xm, 0)}.

Case 2: c has all Nm + 1 extensions onto the concepts in C. Clearly, c ∈ CXm .

By Theorem 16, CXm is VCDΨ∗-maximum of dimension d−1. So, by induction hypothesis,
for each c ∈ CXm there is a compression set S of d − 1 examples, such that c = cS,CXm .
Let Si = S ∪ {(Xm, i)}, for all 0 ≤ i ≤ Nt. By Corollary 18, Si represents the concept
cSi,C = cX(Si),C ∪ Si because cX(Si),C is the single concept in CX(Si).

We show that Si is a compression set for c∪{(Xm, i)}, too. From Lemma 31, cSi,C −Xm =
cS,CXm , i.e, cSi,C −Xm = c. So, cSi,C and cS,CXm assign the same labels to all instances in
X \ {Xm}. Consequently Si is a compression set for cSi,C = c ∪ {(Xm, i)}.

Corollary 21 Let C be a VCDΨ∗-maximum class with VCDΨ∗(C) = d. Then C has a sample
compression scheme of size d.
Proof The compression function, on the input of a sample S of size at least d, where S agrees
with at least one concept in C, works as follows: S is a concept c ∈ C|X(S). Since C|X(S) is
VCDΨ∗-maximum with VCDΨ∗(C) = d, Theorem 20 yields a compression set S′ ⊆ S for S such
that |S′|= d. In particular, c = cS′,C|X(S)

. Any such compression set is returned by the compression
function.

The decompression function, given a compression set S′ of size d and an Xi ∈ X , works
as follows. If Xi ∈ X(S′), then the output is the label l for which (Xi, l) ∈ S′. If Xi /∈
X(S′), then the output label l is the same as the one predicted by the decompression set of S′

with respect to C|X(S)∪{Xi}, which exists because C|X(S)∪{Xi} is a VCDΨ∗-maximum class with
VCDΨ∗(C|X(S)∪{Xi}) = d. In fact, the decompression function returns as a hypothesis the concept
cS′,C on X from the class C.

For an infinite instance space and for a sample S consistent with some concept in C with
X(S) ⊆ X ′ ⊂ X , such thatX ′ is finite and |S|= d, we define cX(S),C on the instances inX ′\X(S)
as cX(S),C|X′ . Consequently, cS,C is defined as cS,C|X′ . Note that X ′ can contain finitely many in-
stances from X and since C is maximum, C|X′ is also maximum. So, by Lemma 30 , cX(S),C
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assigns a unique label to each instance Xi ∈ X \X(S). That is, the concept cS′,C on X is consis-
tent with the original sample set cS′,C|X(S)

. So, the Corollary holds also for infinite X .

Appendix C. Proofs Omitted From Section 5

Lemma 22 Let VCDΨ∗(C) = 1. Then for any Xi, Xj ∈ X with Xi 6= Xj , there is at most one
concept in C|{Xi,Xj} with teaching dimension 2 w.r.t. C|{Xi,Xj}.
Proof If there is no concept inC|{Xi,Xj} with teaching dimension 2, we are done. Assume some c ∈
C|{Xi,Xj} fulfills TD(c, C|{Xi,Xj}) = 2. W.l.o.g., c = {(Xi, 0), (Xj , 0)} and TS(c, C|{Xi,Xj}) =
{{(Xi, 0), (Xj , 0)}}. Since no sample of size 1 can be a minimal teaching set for c in C|{Xi,Xj},
there must exist concepts cα, cβ ∈ C|{Xi,Xj} with c(Xi) = cβ(Xi) and c(Xj) = cα(Xj). That is,
cα = {(Xi, a), (Xj , 0)} and cβ = {(Xi, 0), (Xj , b)} for some nonzero a ∈ Xi and b ∈ Xj .

c ∈ C|{Xi,Xj} Xi Xj

c 0 0

cα a 0

cβ 0 b
...

Now, we consider all other possible concepts c′ = {(Xi, a
′), (Xj , b

′)} that can exist inC|{Xi,Xj}.
Based on the possible values for a′ and b′, we consider three groups of concepts:

Group 1 : a′ ∈ Xi \ {0} and b′ ∈ Xj \ {0}. Let ψ1 : Xi → {0, 1}, ψ2 : Xj → {0, 1} and
ψ = (ψ1, ψ2) such that ψ1(x) = ψ2(x) = 0 if x = 0, and ψ1(x) = ψ2(x) = 1 if x 6= 0. Having
c, ca, cb, c

′ ∈ C|{Xi,Xj}, it is easy to see that {(0, 0), (1, 0), (0, 1), (1, 1)} ⊆ ψ(C|{Xi,Xj}). This
contradicts the assumption that VCDΨ∗(C) = 1. So, this case cannot occur.

Group 2 : a′ = 0 and b′ ∈ Xj \ {0, b}. Since case 1 is not possible, any such concept has
teaching dimension 1. In particular, {(Xj , b

′)} ∈ TS(c′, C|{Xi,Xj}).
Group 3 : a′ ∈ Xi \ {0, a} and b′ = 0. Again, since case 1 is not possible, any such concept has

teaching dimension 1. In particular, {(Xi, a
′)} ∈ TS(c′, C|{Xi,Xj}).

Since Group 1 is empty, we conclude that for any concept c′ ∈ C|{Xi,Xj}\{c, cα, cβ}, c′(Xi) 6=
a and c′(Xj) 6= b. Thus, {(Xi, a)} ∈ TS(cα, C|{Xi,Xj}) and {(Xj , b)} ∈ TS(cβ, C|{Xi,Xj}).

Hence, there is no other concept in C|{Xi,Xj} with teaching dimension 2.

Lemma 24 Let C be a concept class and let S be a sample consistent with some concept in C and
(Xi, li), (Xj , lj) ∈ S, such that (Xi, li) implies (Xj , lj). If VCDΨ∗(C) = 1 then (Xi, li) uniquely
implies (Xj , lj).
Proof Let ei = (Xi, li), and ej = (Xj , lj). First, we consider the case when ei explicitly implies
ej . Then {ei} ∈ TS({ei, ej}, C|{Xi,Xj}) and thus there is no sample S′ ⊇ {(Xi, li), (Xj , l

′)}, with
l′ 6= lj , consistent with some concept in C. Hence, ei uniquely implies ej .

Second, we consider the case when ei implicitly implies ej . That is, none of {ei} or {ej} is a
minimal teaching set for {ei, ej} in C|{Xi,Xj}. So, for every sample S′ ⊇ {(Xi, li), (Xj , l

′)} con-
sistent with some concept in C, (Xi, li) does not explicitly imply (Xj , l

′). Further, by Lemma 22,
{ei, ej} is the only sample in C|{Xi,Xj} that has teaching dimension 2 and all other samples in
C|{Xi,Xj} have a minimal teaching set of size 1. So, (Xi, li) cannot imply any example other than
(Xj , lj), or equivalently, ei uniquely implies ej .
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Corollary 25 Let C be a concept class and let S be a sample consistent with some concept in C
and (Xi, li), (Xj , lj) ∈ S. If VCDΨ∗(C) = 1 then at least one of the following statements is true:

1. (Xi, li) explicitly implies (Xj , lj).

2. (Xj , lj) explicitly implies (Xi, li).

3. (Xi, li) implicitly implies (Xj , lj) and (Xj , lj) implicitly implies (Xi, li).

Proof Let ei = (Xi, li), and ej = (Xj , lj). If {ei} ∈ TS({ei, ej}, C|{Xi,Xj}) then ei explicitly im-
plies ej . If {ej} ∈ TS({ei, ej}, C|{Xi,Xj}) then ej explicitly implies ei. If TS({ei, ej}, C|{Xi,Xj}) =
{{ei, ej}}, then ei implicitly implies ej and also ej implicitly implies ei. By Lemma 24 ei uniquely
implies ej and ej uniquely implies ei.

Lemma 26 Let VCDΨ∗(C) = 1, and let S be a sample consistent with some concept in C with
e1, e2, e3 ∈ S. If e1 explicitly implies e2 and e2 explicitly implies e3, then e1 explicitly implies e3. If
e1 explicitly implies e2 and e2 implicitly implies e3, then e1 implies e3. In particular, in either case,
e1 uniquely implies e3.
Proof Proof of the first statement: W.l.o.g., suppose e1 = (X1, l1), e2 = (X2, l2), e3 = (X3, l3).
By the definition of explicit implication, every c ∈ C with c(X1) = l1 satisfies c(X2) = l2, and
every c ∈ C with c(X2) = l2 satisfies c(X3) = l3. Thus every c ∈ C with c(X1) = l1 satisfies
c(X3) = l3, i.e., e1 explicitly implies e3.

Proof of the second statement: W.l.o.g., let e1 = (X1, 0), e2 = (X2, 0), e3 = (X3, 0). So,
(0, 0) ∈ C|{X1,X2} and (0, 0) ∈ C|{X1,X3}.

e2 implicitly implies e3, so TS({e2, e3}, C|{X2,X3}) = {{(X2, 0), (X3, 0)}}. That is, there are
some concepts c1, c2 ∈ C|{X2,X3} such that c1(X2) = 0, c1(X3) = l3, for some nonzero l3 ∈ N3,
and c2(X2) = l2, c2(X3) = 0, for some nonzero l2 ∈ N2. Now, we discuss the possible values for
c2 on X1.

If c2(X1) = 0, then (0, l2) ∈ C|{X1,X2} and (X1, 0) is not a minimal teaching set for {e1, e2} =
{(X1, 0), (X2, 0)} in C|{X1,X2}. So, c2(X1) = l1, for some nonzero l1 ∈ N1. This means that
(l1, 0) ∈ C|{X1,X3} and (X3, 0) is not a minimal teaching set for {e1, e3} = {(X1, 0), (X3, 0)} in
C|{X1,X2}. So, e3 does not explicitly imply e1. Now, if e1 ∈ TS({e1, e3}, C|{X1,X3}) then e1 ex-
plicitly implies e3. Otherwise, TS({e1, e3}, C|{X1,X3}) = {{(X1, 0), (X3, 0)}} and e1 implicitly
implies e3. So, in any case, e1 implies e3 and since VCDΨ∗(C) = 1, e1 uniquely implies e3 by
Lemma 24.

Corollary 28 Let VCDΨ∗(C) = 1. Then C has a sample compression scheme of size 1.
Proof The compression function, given a sample S that is labeled consistently with some concept
in C, outputs a representative r for s, which exists by Theorem 27.

The decompression function, on input of an example r and an instance Xt ∈ X , works as
follows. If Xt = X(r), then r = (Xt, lt) and the output is lt. If Xt 6= X(r), the decompression
function looks for a label lt ∈ Xt such that r uniquely implies (Xt, lt). If lt exists, it is output. Else
the output is 0.
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