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Abstract. A standard way to capture the inherent complexity

of the isomorphism type of a countable structure is to consider the

collection of all Turing degrees relative to which a given structure

has a computable isomorphic copy. This set is called the degree

spectrum of structure. Similarly, to characterize the complexity of

models of a theory, one may consider the collection of all degrees

relative to which the theory has a computable model. In this case

we get the spectrum of the theory.

In this paper we generalize these two notions to arbitrary equiv-

alence relations. For a structure A and an equivalence relation

E, we define the degree spectrum DgSp(A, E) of A relative to E

to be the set of all degrees capable of computing a structure B
that is E-equivalent to A. Then the standard degree spectrum

of A is DgSp(A,∼=) and the degree spectrum of the theory of A
is DgSp(A,≡). We consider the relations ≡Σn (A ≡Σn B iff the

Σn theories of A and B coincide) and study degree spectra with

respect to ≡Σn
.

1. Introduction

For a countable structure A, its degree spectrum DgSp(A) was de-

fined by Richter in [11] and consists of the Turing degrees of all iso-

morphic copies of A. As shown by Knight in [10], in all nontrivial

cases, the degree spectrum of a structure is closed upward. Degree
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spectra of structures with various model-theoretic and algebraic prop-

erties have been widely studied; an overview of the current situation

can be found, e.g., in [3]. Probably the simplest example of a degree

spectrum is a cone above a Turing degree d. On the other hand, no

non-degenerate finite or countable union of cones can be a degree spec-

trum [13]. Slaman and Wehner in [12, 14] gave examples of structures

with the degree spectrum consisting of exactly the non-computable de-

grees. In [9] Kalimullin constructed an example of a structure with

its degree spectrum equal to all the non-∆0
2 degrees. Greenberg, Mon-

talbán and Slaman showed that non-hyperarithmetical degrees form a

spectrum of a structure in [6].

For a theory T , the degree spectrum of T was defined in [1]. It

consists of all degrees of countable models of T . Some of the known

examples of the spectra of theories include [1]: cones, a non-degenerate

union of two cones, exactly the PA degrees, exactly the 1-random de-

grees. On the other hand, the authors of [1] prove that the collection of

non-hyperarithmetical degrees is not the spectrum of a theory. In par-

ticular, these examples show that not every spectrum of a structure is

a spectrum of a theory and, vice versa, not every spectrum of a theory

is a spectrum of a structure.

In this paper we suggest to consider the following generalization of

these notions to arbitrary equivalence relations.

Definition 1. The degree spectrum of a countable structure A with

universe ω relative to the equivalence relation E is

DgSp(A, E) = {d | there exists a d-computable B E−equivalent to A}.

A related notion was independently introduced by L. Yu in [15]: for

an equivalence relation E, a reduction 6r over 2ω and a real x ∈ 2ω,

the (E, r)-spectrum of x is the set SpecE,r(x) = {y ∈ 2ω : ∃z 6r
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y(E(z, x))}. This definition is related to our Definition 1 as follows:

DgSp(A, E) = {degT (y) : y ∈ SpecE,T (D(A))},

where D(A) is the atomic diagram of A.

The classical degree spectrum of A is DgSp(A,∼=), the degree spec-

trum of A under isomorphism, while the degree spectra of the theory

of A is DgSp(A,≡), the degree spectrum of A under elementary equiv-

alence.

In this paper, instead of considering the full theory of a structure, as

for theory spectra, we consider Σn-fragments of theories and the corre-

sponding equivalence relations ≡Σn (two structures are ≡Σn-equivalent

if their Σn-theories coincide). We also write A ≡Σn B when A and

B are Σn-equivalent. We call DgSp(A,≡Σn) the Σn–spectrum of A.

We will study what kinds of spectra are possible with respect to these

equivalence relations.

Degree spectra with respect to another natural equivalence relation,

that of bi-embeddability, are considered in [4].

2. Two cones

It is well-known that the degree spectrum of a structure cannot be

the union of two cones [13]. On the other hand, the authors of [1] built

a theory T whose spectrum is equal to a non-degenerate union of two

cones. For Σn-spectra, the situation depends on n.

We start with a simple observation.

Lemma 2. Two relational structures A and B are Σ1–equivalent iff

they have the same finite substructures (in finite sublanguages).

Proof. Suppose A ≡Σ1 B. Choose an arbitrary finite substructure A0

of A of a finite sublanguage. As its language is finite, we can write

its atomic diagram D(A0) as a single first order sentence ϕ(a) with
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parameters a from A0. Then A |= ∃xϕ(x), where |x| = |a|. By Σ1–

equivalence, B |= ∃xϕ(x). Let b witness ϕ in B. Then the finite

substructure B0 of B with domain b and with relation symbols that

appear in ϕ is isomorphic to A0.

Suppose now that A and B have the same finite substructures in fi-

nite sublanguages. Assume A |= ∃xϕ(x). Let a be a witness. Consider

the finite substructure A0 of A with the universe a and the language

consisting of the relation symbols used in ϕ. By assumption, there is

a finite substructure B0 of B in the same language which is isomorphic

to A0. Then B0 |= ∃xϕ(x), and thus B |= ∃xϕ(x). �

Theorem 3. No Σ1–spectrum of a structure can be a non-degenerate

union of two cones.

Proof. Let A and B be Σ1–equivalent structures that have degrees a

and b, respectively, where a and b are incomparable. For simplicity,

we use the standard assumption that the language of the structures is

relational. We build a Σ1–equivalent structure C of degree c, such that

c is neither above a nor above b.

The universe of C will be ω. At each stage s we define a finite

substructure Cs with the universe an initial segment of ω. To make

sure that C computes neither A nor B, we as usually consider the list

of requirements of the form ΦCe 6= A and ΦCe 6= B. Assume that the

next requirement is of the form ΦCe 6= A, so we want to diagonalize

against C computing A. Let {Nj}j∈ω be a list of finite structures, such

that each Nj:

• extends Cs,
• has the universe an initial segment of ω,

• is isomorphic to a finite substructure of B in a finite language,

• every such substructure of B appears in the list.

Obviously, we can construct such a list computable in B. Now we ask

if there are n and Nj such that Φ
Nj
e (n) ↓6= A(n). If the answer is
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positive, we let Cs+1 be equal to such Nj. So the requirement ΦCe 6= A
will be satisfied.

On the other hand, if the answer is negative, then for all n and Nj
either Φ

Nj
e (n) ↑ or Φ

Nj
e (n) ↓= A(n). Suppose that in the end of the

construction ΦCe is everywhere defined. Then for every n there exists

an Nj such that Φ
Nj
e (n) ↓= A(n). So we can compute A from B, which

is a contradiction. Therefore, in this case ΦCe must be partial, and the

requirement is again satisfied.

Note that the above construction guarantees that every substructure

of C in a finite sublanguage appears in A and B. To ensure that C ≡Σ1

A,B, we also add stages where we extend the previously built Cs to

include the next finite substructure of A or B. �

Theorem 4. There is a structure A with DgSp(A,≡Σ2) equal to the

union of two non-degenerate cones.

Proof. If we allow infinite languages, the statement follows directly

from the result of Andrews and Miller [1], where they build a theory

T with the spectrum of T consisting of exactly two cones. Let A be

a model of T and let B ≡Σ2 A. The theory T is a complete theory

that can be axiomatized using Σ2- and Π2-sentences. Thus, B is also

a model of T . In other words, DgSp(A,≡Σ2) = DgSp(A,≡), which is

the union of two cones.

The result is also true for finite languages, for example, using the

transformation from [7] of arbitrary structures into graphs. It is not

hard to show that the transformation preserves Σ2-equivalence. �

3. All but computable

According to [12] and [14], there exist structures with the classical

degree spectrum containing exactly all the non–computable degrees.

Moreover, as the structure from [12] is not elementary equivalent to a

computable structure, the built example actually shows that the degree
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spectrum of the theory of the constructed structure consists of all the

non–computable degrees.

The theory of the structure built in [12] is Σ3- and Π3-axiomatizable,

however minor modifications can make it axiomatizable using Σ2- and

Π2-sentences.

Theorem 5. There exists a countable structure A, such that

DgSp(A,≡Σ2) consists of exactly all the non–computable Turing de-

grees. The same is also true for DgSp(A,≡Σn), for all n > 2.

On the other hand, for Σ1-spectra this is again not true:

Proposition 6. No structure A may have its Σ1-spectrum consisting

of exactly the non-computable degrees.

Proof. The Σ1-spectrum of any structureA has the form {d |X is d-c.e.},
where X is the set of Gödel indices of the sentences from the Σ1-theory

of A. As shown in [2], if the collection of oracles that enumerate any set

X has positive measure, then X is c.e. So, if DgSp(A,≡Σ1) contains

all non–computable degrees, then the Σ1-theory of A is c.e. It is not

hard to show that if a Σ1-theory is c.e., then it has a computable model

(see Theorem 10 below for a more general statement). This completes

the proof of the proposition. �

Similar considerations prove the following:

Corollary 7.

(1) If DgSp(A,≡Σ1) contains all non–computable c.e. degrees, it

also contains 0.

(2) If DgSp(A,≡Σ1) contains all low degrees, it also contains 0.

(3) If DgSp(A,≡Σ1) contains all high degrees, it also contains 0.

(4) If DgSp(A ≡,Σ1) contains all PA degrees, it also contains 0.

(5) If DgSp(A,≡Σ1) contains all degrees above a, it also contains

a.
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Proposition 6 and Corollary 7 can also be proved by coding a special

kind of a minimal pair of degrees into the above collections of degrees.

Definition 8. The sets X and Y form a Σ1-minimal pair if Σ1(X) ∩
Σ1(Y ) = Σ0

1.

For example, if the set of all non-computable degrees were a Σ1-

spectrum, there would exist structures A,B of degrees a,b, respec-

tively, where a and b form a Σ1-minimal pair. As the Σ1-theory TΣ1

is c.e. in A and in B, it must be c.e. In this case it must have a com-

putable model, so the Σ1-spectrum must contain 0. Analogously for

results from Corollary 7. A similar idea was used in [1] to prove that

certain collections of degrees are not structure spectra.

We use Σ1-minimal pairs to prove that further collections of degrees

cannot be Σn-degree spectra, for suitable n ∈ ω. We need the following

two facts.

Observation 9. For any C, if A⊕B is sufficiently generic, then A⊕C
and B⊕C form a Σ0

1-minimal pair over C. That is, Σ0
1(A⊕C)∩Σ0

1(A⊕
C) = Σ0

1(C).

Theorem 10. If T is a complete consistent theory in computable lan-

guage L, and S is the Σn-fragment of T (equivalently, S is the Σn-

theory of a structure), and S is c.e., then S has a computable model.

Proof. We perform an effective Henkin construction. Let our universe

be {ci}i∈ω, and let {∃xϕi(x)}i∈ω be an enumeration of all Σn-sentences

in L, where ϕi is a Πn−1-formula. Let {θi}i∈ω be an enumeration of all

Σn−1-sentences in L∪{ci}i∈ω. We will compute the (n− 1)-diagram of

our structure.

During the construction, we will have a set of sentences δs, which is

the fragment of the diagram we have committed to so far. We begin

with δ0 = ∅. We also keep a stage ts which is the stage we have

enumerated S to. We begin with t0 = 0.
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At stage s + 1, let δ̂s be made from δs by replacing the constant

for ci with the new variable yi, and similarly θ̂s(y) (where the same

substitution ci 7→ yi is made).

Define the following:

ψs,+t = ∃y∃z

 θ̂s(y) ∧
(∧

ρ∈δ̂s ρ(y)
)
∧
(∧

∃xτ(x,y)∈δ̂s(∃w ∈ z)τ(w, y)
)

∧
(∧

i<s
∃xϕi(x)∈St

(∃w ∈ yz)ϕi(w)

)
∧
(∧

i<s
∃xϕi(x)6∈St

(∀w ∈ yz)¬ϕi(w)

)  ,

ψs,−t = ∃y∃z

 ¬θ̂s(y) ∧
(∧

ρ∈δ̂s ρ(y)
)
∧
(∧

∃xτ(x,y)∈δ̂s(∃w ∈ z)τ(w, y)
)

∧
(∧

i<s
∃xϕi(x)∈St

(∃w ∈ yz)ϕi(w)

)
∧
(∧

i<s
∃xϕi(x)6∈St

(∀w ∈ yz)¬ϕi(w)

)  .
where “∃w ∈ yz” means there is a tuple of the appropriate length made

from the elements of the tuples y and z, and similarly for “∀w ∈ yz”.

Note that both ψs,+t and ψs,−t are Σn-sentences in L. We enumerate S

until we see some ψs,+t or ψs,−t enumerated with t > ts. We will argue

in the verification that this must eventually occur.

Suppose we have seen ψs,+t be enumerated. Fix some tuple c ∈
{ci}i∈ω with |c| = |z| and none of c occurring in δs or θs. Fix a bijection

between c and z. Define the map f such that for z ∈ z, f(z) follows

this bijection, and for yj, f(yj) = cj. Note that this is an injection

from the variables occurring in yz into {ci}i∈ω.

For every sentence ∃xϕi(x) ∈ St, fix a witnessing tuple wi. Note

that we can identify such w effectively: since “∃w ∈ yz” is a finite

disjunction, we can make more specific versions of ψs,+t by retaining

only a single disjunct for every ϕi. Eventually, one of these more

specific sentences must be enumerated. Similarly, for every sentence

∃xτ(x, y) ∈ δs, fix a witnessing tuple wτ .

Define ts+1 = t and

δs+1 = δs ∪ {θs} ∪ {τ(f(wτ ), f(y)) : ∃xτ(x, y) ∈ δ̂s}

∪{ϕi(f(wi)) : i < s & ∃xϕi(x) ∈ St}

∪{¬ϕi(f(w)) : i < s & w ∈ yz & ∃xϕi(x) 6∈ St}.



DEGREE SPECTRA UNDER EQUIVALENCE RELATIONS 9

If instead ψs,−t is enumerated, proceed similarly except define δs+1

with ¬θs instead of θs. Once ts+1 and δs+1 are defined, proceed on to

stage s+ 2.

Verification:

Claim 10.1. For every s, ∃y
∧
ρ∈δ̂s ρ(y) ∈ S.

Proof. Induction. �

In particular, the diagram D = {δs}s∈ω we build is consistent.

Claim 10.2. For every s, we will eventually see some ψs,+t or ψs,−t

enumerated into S.

Proof. We know that ∃yδ̂s(y) is in S and thus in T . Since T is complete,

at least one of ∃y(δ̂s(y) ∧ θ̂s(y)) or ∃y(δ̂s(y) ∧ ¬θ̂s(y)) is in T , and by

counting quantifiers, must thus be in S.

Let t be such that St �s= S �s. Then at least one of ψs,+t or ψs,−t is in

T , and thus is in S. �

Claim 10.3. D is computable.

Proof. We decide θs at stage s. �

Let M be the structure with universe {ci}i∈ω determined by the

quantifier-free fragment of D.

Claim 10.4. M |= D.

Proof. Induction on sentence complexity. For quantifier-free sentences,

this is immediate.

Suppose ∃xτ(x, b) ∈ D. Then at some sufficiently large stage, we

act to put τ(c, b) ∈ D for some b. By the inductive hypothesis, M |=
τ(c, b), so M |= ∃xτ(x, b).

Suppose ∀xτ(x, b) ∈ D. Then for any c, it cannot be that ¬τ(c, b) ∈
D, as that would violate the consistency of D. Since we eventually act
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to decide θ = τ(c, b), it must be that τ(c, b) ∈ D. By the inductive

hypothesis, M |= τ(c, b). Since c was arbitrary, M |= ∀xτ(x, b). �

Claim 10.5. M |= S.

Proof. If ∃xϕi(x) ∈ St, then at any stage with i < s and t < ts, we will

place the sentence ϕi(c) in D for some c, and thus M |= ∃xϕi(x).

If ∃xϕi(x) 6∈ S, then at every stage with i < s, we will place the

sentence ¬ϕi(c) in D for every c mentioned so far in the construction.

Thus M 6|= ϕi(c) for any c, and so M 6|= ∃xϕi(x). �

This completes the proof. �

We now use Observation 9 und Theorem 10 to prove that non-∆0
n-

degrees cannot be a Σn-spectrum.

Theorem 11. The non-∆0
n degrees are not the Σn-spectrum of any

structure.

Proof. Suppose there were a structure M with SpecΣn(M) consisting

precisely of the non-∆0
n degrees. Using Observation 9, fix degrees a and

b forming a Σ0
1-minimal pair over 0(n−1), with a and b not arithmetical.

By jump inversion, there are degrees c and d with c(n−1) = a and

d(n−1) = b, and neither c nor d are arithmetical.

By assumption, c,d ∈ SpecΣn(M). Let S be the Σn-theory of M.

Then S ∈ Σ0
n(c) = Σ0

1(a) and also S ∈ Σ0
n(d) = Σ0

1(b). Since a

and b form a Σ0
1-minimal pair over 0(n−1), S ∈ Σ0

1(0(n−1)), and thus

by, Theorem 10, 0(n−1) can compute a model of S. This model has

∆0
n-degree, contrary to the assumption. �

4. A non–trivial spectrum for Σ1–equivalence

In view of the results about Σ1-spectra from the previous two sec-

tions, it is natural to ask whether there exist Σ1–spectra that are not

cones. The next theorem answers this question positively.
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Theorem 12. There exists a structure A such that its Σ1–spectrum

DgSp(A,≡Σ1) cannot be presented as a cone above a degree a.

Proof. As we already noted above, Σ1-spectra must have the form

{d | X is d-c.e.}, where X is the set of Gödel indices of the sentences

from the Σ1-theory. On the other hand, every set of degrees of the form

{d | X is d-c.e.}, for some X, is a Σ1-spectrum of a structure AX : the

structure AX contains an ω–chain x0, x1, . . . using a binary predicate

P (xn, xn+1) (and a constant that fixes x0 as the first element of the

chain). Whenever n is enumerated into X, we define Q(xn, yn), where

yn is a new element that from now on witnesses n ∈ X. It is clear that

DgSp(A,≡Σ1) = {d | X is d-c.e.}.
Richter studied sets of this form in [11]. She constructed a non-

computably enumerable set X, which is computably enumerable in sets

B and C forming a minimal pair. Thus, the degrees that enumerate X

do not form a cone. The corresponding structureAX , built as described

above, witnesses the statement of the theorem. �

5. Relations between Σn-spectra

In this section we study relations between Σn-spectra, for various n.

Proposition 13. If S is a Σn–spectrum then {d | d′ ∈ S} is a Σn+1–

spectrum.

Proof. The proof is essentially the same as the proof of Lemma 2.8

in [1] which is based on Marker’s construction. In that lemma it is

proved that if S is a theory spectrum, then so is {d | d′ ∈ S}. The

idea of the Marker’s construction is to build a new theory T ′ in such

a way that every predicate of the original theory T is interpreted by

both Σ2- and Π2-formula in T ′. Using this, one can make sure that for

an arbitrary sentence ϕ from T , the number of quantifier alternations

in its interpretation ϕ′ in T ′ increases only by one. Therefore, if the
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original theory is axiomatizable by Σn- or Πn-sentences, then the new

theory is axiomatizable by Σn+1- or Πn+1-sentences. �

This result allows us to prove that some collections of degrees are

Σn-spectra.

Proposition 14. Non-lown degrees form a Σn+2-spectrum.

Proof. By Theorem 5, the set of degrees {d : d �T 0(n)} is a Σ2-

spectrum. Applying Proposition 13 n times we get the desired result.

�

Proposition 15. The hignn degrees form a Σn+1-spectrum of a struc-

ture.

Proof. We build a structure A with its Σn+1-spectrum consisting of ex-

actly the highn degrees. Let B be a structure that has the Σ1-spectrum

of the form {d : d >T 0(n+1)}. Applying Proposition 13 n times, we

get A with the desired Σn+1 spectrum. �

Recall that by Corollary 7, high degrees do not form a Σ1–spectrum.

We are going to extend this result by showing that highn degrees never

form a Σn-spectrum.

Theorem 16. The highn degrees do not form a Σn-spectrum of a struc-

ture.

The proof follows from Proposition 17 and Theorem 18, where we

compare the descriptive complexity of {X ∈ ωω : X is highn} and

{X ∈ ωω : X ∈ S}, for a Σn-spectrum S.

Proposition 17. Let T be a Σn-fragment of a (complete) theory. Then

{X : X computes (the atomic diagram of) a model of T} is a Σ0
n+2-

class.
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Proof. X computes a model of T iff

∃Φ∀ϕ ∈ Σn[ϕ ∈ T ⇐⇒ ΦX |= ϕ].

Here ΦX is the X-computable structure computed by Φ with oracle

X. Then for a Σn sentence ϕ, the complexity of “ΦX |= ϕ” is Σ0,X
n .

Considering T as a parameter, we get the desired complexity Σ0
n+2. �

Theorem 18. {X ∈ ωω : X is highn} is not a Σ0
n+2-class.

The proof will follow from several claims. The goal is, for every

Σ0
n+2-class C, to build a function f such that f ∈ C ⇐⇒ f is not

highn.

Definition 19. Define a notion of forcing (P,6P) where the conditions

are (σ0, . . . , σn−1) ∈ (ω<ω)n, and σ ≥P τ if and only if the following

hold:

(1) σm ⊆ τm for all m < n; and

(2) For every m < n − 1 and every x ∈ dom(σm+1), if 〈x, t〉 ∈
(dom(τm)− dom(σm)), then τm(〈x, t〉) = σm+1(x).

For a function h, define Ph = {σ ∈ P : ∀x ∈ dom(σn−1) [σn−1(x) ≥
h(x)]}.

For G a filter, define fGm =
⋃
σ∈G σm.

Note that if G is sufficiently generic, then the fGm will be total func-

tions with fGm+1(x) = limt f
G
m(〈x, t〉) for all x and all m < n− 1. Intu-

itively, fGm+1 is the jump of fGm. We will not actually verify this, but it

guides our intuition.

Claim 19.1. Fix h.

For A a Σ0
m-class with m < n, if σ Ph [f0 ∈ A], then there is

τ ≤P σ with τ ∈ Ph and (τ0, . . . , τm−1, ∅, . . . , ∅) P [f0 ∈ A].

For B a Π0
m-class with m < n, if σ Ph [f0 ∈ B], then

(σ0, . . . , σm, ∅, . . . , ∅) P [f0 ∈ B].
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Proof. We prove the two parts of the claim simultaneously, by induc-

tion.

For A open, if σ Ph [f0 ∈ A], then it must be that for every

extension ρ ≤P σ with ρ ∈ Ph, there is an extension τ ≤P ρ with τ ∈ Ph
and [τ0] ⊆ A. Then (τ0, ∅, . . . , ∅) P [f0 ∈ A], as desired.

For B closed, if σ Ph [f0 ∈ B], then we claim (σ0, σ1, ∅, . . . , ∅) P
[f0 ∈ B]. For suppose not. Then there is an extension ρ ≤P
(σ0, σ1, ∅, . . . , ∅) with ρ ∈ P and [ρ0] ∩ B = ∅. But note

that (ρ0, σ1, . . . , σn−1) ≤P σ and (ρ0, σ1, . . . , σn−1) ∈ Ph. Since

(ρ0, σ1, . . . , σn−1) Ph [f0 6∈ B], this contradicts our assumption for σ.

For A a Σ0
m+1-class, write A =

⋃
j Bj, where each Bj is a Π0

m-class.

If σ Ph [f0 ∈ A], then it must be that for every ρ ≤P σ with ρ ∈ Ph,
there is an extension τ ≤P ρ with τ ∈ Ph and a j with τ Ph [f0 ∈ Bj].
By induction, (τ0, . . . , τm, ∅, . . . , ∅) P [f0 ∈ Bj]. Such a τ suffices for

the claim.

For B a Π0
m+1-class, write B =

⋂
j Aj, where eachAj is a Σ0

m-class. If

σ Ph [f0 ∈ B], then we claim (σ0, . . . , σm+1, ∅, . . . , ∅) P [f0 ∈ B]. For

suppose not. Then there is an extension ρ ≤P (σ0, . . . , σm+1, ∅, . . . , ∅)
with ρ ∈ P and some j with ρ P [f0 6∈ Aj].

Consider (ρ0, . . . , ρm, σm+1, . . . , σn−1), which is an extension of σ

and an element of Ph. By choice of σ, there must be a ν ≤P
(ρ0, . . . , ρm, σm+1, . . . , σn−1) with ν ∈ Ph and ν Ph [f0 ∈ Aj].
By induction, there is a τ ≤P ν with (τ0, . . . , τm−1, ∅, . . . , ∅) P
[f0 ∈ Aj]. But then (τ0, . . . , τm−1, ρm, . . . , ρn−1) extends both

(τ0, . . . , τm−1, ∅, . . . , ∅) and ρ, and thus P-forces both [f0 ∈ Aj] and

[f0 6∈ Aj], a contradiction. �

Claim 19.2. Fix h. For B a Π0
m-class with m < n and σ ∈ Ph, if

σ P [f0 ∈ B], then (σ0, . . . , σm, ∅, . . . , ∅) Ph [f0 ∈ B].
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Proof. Suppose not. Then there is some ρ ≤P (σ0, . . . , σm, ∅, . . . , ∅)
with ρ ∈ Ph and ρ Ph [f0 6∈ B]. By Claim 19.1 applied to the comple-

ment of B, there is a τ ≤P ρ with τ ∈ Ph and (τ0, . . . , τm−1, ∅, . . . , ∅) P
[f0 6∈ B]. So (τ0, . . . , τm−1, ∅, . . . , ∅) and σ P-force incompatible state-

ments, but (τ0, . . . , τm−1, σm, . . . , σn−1) is a common extension, which

is a contradiction. �

Fix h ∈ ∆0
n. Note that if h were computable, Ph and P would be com-

putably isomorphic, and so the following claim would be immediate.

As it is, Ph and P are only ∆0
n-isomorphic, and the claim does not hold

for arbitrary notions of forcing which are ∆0
n-isomorphic to P—consider

P with the added requirement that σ0(〈x, 0〉) = ∅′(x).

Recalling our intuition, the claim holds in this case because the ∆0
n-

information of Ph only occurs in fGn−1, which is the (n − 1)st jump

of fG0 .

Claim 19.3. If h is ∆0
n, and G is sufficiently (Ph,6P)-generic, then

fG0 is not highn.

Proof. We begin with the following:

Claim 19.3.1.
(
fG0
)(n)
6T ∅(n) ⊕

⊕
m<n f

G
m.

Proof. It suffices to show that our oracle can uniformly decide [fG0 ∈ A]

for any Σ0
n-class A. Fix an effective list of Π0

n−1-classes (Bj)j∈ω with

A =
⋃
j Bj.

By Claims 19.1 and 19.2,

σ Ph [f0 6∈ A] ⇐⇒ ∀j ∀τ ∈ Ph (τ ≤P σ → τ 6Ph [f0 ∈ Bj])

⇐⇒ ∀j ∀τ ∈ Ph (τ ≤P σ → τ 6P [f0 ∈ Bj]) .

Since Bj is Π0
n−1, and P is a computable notion of forcing, the sentence

τ P [f0 ∈ Bj] is uniformly Π0
n−1. Thus σ Ph [f0 6∈ A] is uniformly

Π0
n.
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On the other hand, if fG0 ∈ A, then for some σ ∈ G,

∃j (σ Ph [f0 ∈ Bj]). By Claims 19.1 and 19.2 again,

∃j (σ Ph [f0 ∈ Bj]) ⇐⇒ ∃j (σ P [f0 ∈ Bj]) ,

which is uniformly Σ0
n.

Clearly
⊕

m<n f
G
m computes G, and so ∅(n) ⊕

⊕
m<n f

G
m can decide

[f0 ∈ A] by enumerating σ ∈ G until it finds σ with σ Ph [f0 6∈ A] or

∃j (σ Ph [f0 ∈ Bj]). �

It now suffices to show that ∅(n+1) 66T ∅(n)⊕
⊕

m<n f
G
m. Suppose not,

and let Γ(∅(n), fG0 , . . . , f
G
n−1) = ∅(n+1). Then consider

D =
{
ρ ∈ Ph : ∃xΓ

(
∅(n), ρ

)
(x)↓6= ∅(n+1)(x)

}
.

By assumption, G does not meet D, and so G avoids D. So fix σ ∈ G
such that for all ρ 6P σ, ρ 6∈ D. But then ∅(n) can compute ∅(n+1)

via the following algorithm: on input x, enumerate ρ ∈ Ph extending σ

until finding one with Γ(∅(n), ρ)(x)↓. Since no such ρ is in D, necessarily

Γ(∅(n), ρ)(x) = ∅(n+1)(x). Further, there will always be such a ρ, since

there must be one in G.

This is a contradiction, and so it must be that ∅(n)⊕
⊕

m<n f
G
m, and

so
(
fG0
)(n)

, does not compute ∅(n+1). �

Fix C =
⋃
i

⋂
j

⋃
k Ci,j,k a Σ0

n+2-class, where each Ci,j,k is Π0
n−1. Let

Tot(∆0
n) denote the collection of ∆0

n indices that describe total func-

tions. Given e ∈ Tot(∆0
n), let ϕe be the corresponding function.

Definition 20. Define a notion of forcing (Q,≤Q) where the conditions

are pairs (σ, g) with σ ∈ P and g : Tot(∆0
n) → ω a finite partial

function.

Define (σ, g) ≥Q (ρ, ĝ) if and only if the following hold:

(1) σ ≥P ρ;

(2) dom(g) ⊆ dom(ĝ);

(3) For all e ∈ dom(g), ĝ(e) ≥ g(e);
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(4) For all e ∈ dom(g) and all x ∈ (dom(ρn−1) − dom(σn−1)), if

g(e) = ĝ(e), then ρn−1(x) ≥ ϕe(x); and

(5) For all e ∈ dom(g), one of the following holds:

(a) ĝ(e) = g(e); or

(b) There is an i ≤ e such that (∀j < g(e))∃k (ρ P [f0 ∈ Ci,j,k]).

For G a filter, define fGi =
⋃

(σ,g)∈G σi.

Claim 20.1. For A a Σ0
m-class with m < n, if (σ, g) Q [f0 ∈ A],

then there is (τ , g) ≤Q (σ, g) with (τ0, . . . , τm−1, ∅, . . . , ∅) P [f0 ∈ A].

For B a Π0
m-class with m < n, if (σ, g) Q [f0 ∈ B], then

(σ0, . . . , σm, ∅, . . . , ∅) P [f0 ∈ B].

Proof. As Claim 19.1, mutatis mutandis. �

Claim 20.2. For B a Π0
m-class with m < n and (σ, g) ∈ Q, if σ P

[f0 ∈ B], then (σ0, . . . , σm, ∅, . . . , ∅, g) Q [f0 ∈ B].

Proof. As Claim 19.2, mutatis mutandis. �

Now fix G a sufficiently generic filter for (Q,≤Q) ( ∆0
ω(C)-generic

should suffice).

Claim 20.3. If ` is such that for every i ≤ `, fG0 6∈
⋂
j

⋃
k Ci,j,k, then

there is (σ, g) ∈ G such that for all (τ , ġ) ≤Q (σ, g) and all e ≤ ` with

e ∈ Tot(∆0
n), ġ(e) = g(e).

Proof. For every i ≤ `, there some ji and some (σ, g) ∈ G with

(σ, g) Q [f0 6∈
⋃
k Ci,ji,k]. By taking a common extension, there is

a single (σ, g) ∈ G that serves for all i ≤ `. Now suppose there were

some (τ , ġ) ≤Q (σ, g), i ≤ ` and k such that τ P [f0 ∈ Ci,ji,k]. Then

by Claim 20.2, we would have (τ , ġ) Q [f0 ∈ Ci,ji,k], a contradiction.

Let j0 = maxi≤`{ji}. Then for each (τ , ġ) ≤Q (ρ, ĝ) ≤Q (σ, g) and

each e < i0 with e ∈ Tot(∆0
n), if e ∈ dom(ĝ) and ĝ(e) > j0, then

ġ(e) = ĝ(e). For if this were not the case, by definition we would
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have τ P [f0 ∈ Ci,ji,k] for some i ≤ ` and some k, contrary to the

previous paragraph. So for each e ≤ ` with e ∈ Tot(∆0
n), the set

{ĝ(e) : (ρ, ĝ) ∈ G} has a maximum. By replacing (σ, g) with some

extension, if necessary, we may assume that g(e) is defined and achieves

this maximum. �

Claim 20.4. If fG0 ∈ C, then G1 = {σ : ∃g (σ, g) ∈ G} is (Ph,≤P)-

generic for some ∆0
n function h.

Proof. Fix i0 least with fG0 ∈
⋂
j

⋃
k Ci0,j,k. Let (σ, g) be as in

Claim 20.3 with ` = i0 − 1.

Now, define h � σn−1 as

h(x) =

{
min{max{ϕe(x) : e < i0 ∧ e ∈ Tot(∆0

n)}, σn−1(x), } if x < |σn−1|,
max{ϕe(x) : e < i0 ∧ e ∈ Tot(∆0

n)} otherwise.

Note that h ∈ ∆0
n. This is the desired function.

Since for any (τ , ġ) ≤Q (σ, g), we know ġ(e) = g(e) for all e < i0 with

e ∈ Tot(∆0
n), then by definition we have that τ ∈ Ph. Thus G1 ⊆ Ph.

Suppose now that D ⊆ Ph is such that every condition in G1 can be

extended to a condition in D. It suffices to show that for any condition

(ρ, ĝ) ∈ G extending (σ, g), there is a condition (τ , ġ) ∈ Q with τ ∈ D.

Since fG0 ∈
⋃
k Ci0,j,k for all j, choose (ν, g′) ≤Q (ρ, ĝ) in G such that

(∀j < max{ĝ(e) : e ∈ dom(ĝ)})∃k ((ν, g′) Q [f0 ∈ Ci0,j,k]).

Then by Claim 20.1,

(∀j < max{ĝ(e) : e ∈ dom(ĝ)})∃k (ν P [f0 ∈ Ci0,j,k]).

Choose τ ∈ D extending ν. Define ġ as:

ġ(e) =

{
ĝ(e) e < i0 and e ∈ dom(ĝ),

ĝ(e) + 1 ≥ i0 and e ∈ dom(ĝ).

Note that by our choice of ν, (τ , ġ) ≤Q (ρ, ĝ).
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This demonstrates that every condition in G can be extended to a

condition (τ , ġ) ∈ Q with τ ∈ D. So if G is sufficiently generic relative

to D, then G1 must meet D. �

It follows that if fG0 ∈ C, then fG0 is not highn.

Claim 20.5. If fG0 6∈ C, then fGn−1 dominates all total ∆0
n functions.

Proof. Fix e ∈ Tot(∆0
n). Let (σ, g) be as in Claim 20.3 with ` = e.

Then by definition, for all (ρ, ĝ) ≤Q (σ, g) and all x ∈ (dom(ρn−1)−
dom(σn−1)), we have ρn−1(x) ≥ ϕe(x). So fGn−1(x) ≥ ϕe(x) for all

x ≥ |σn−1|. �

By the limit lemma, fGn−1 6T
(
fG0
)(n−1)

. It follows that if fG0 6∈ C,
then fG0 is highn.

Proof of Theorem 18. For any Σ0
n+2-class C, the above forcing produces

a function fG0 such that fG0 ∈ C ⇐⇒ fG0 is not highn. �

Theorem 21. There is a Σn+1-spectrum that is not a Σn-spectrum of

any structure.

Proof. Follows directly from Proposition 15 and Theorem 18. �

6. Σn-spectra vs theory spectra

We now prove that there is a theory spectrum that is not a Σn-

spectrum, for any n > 1.

Definition 22. Let F = {X ∈ 2ω : (∃Φ)(∀n)[Φ(X(n)⊕{n}) = ∅(2n)]}.

Theorem 23. F is not the Σk-spectrum of any structure M for any

k ∈ ω.

Proof. Suppose not, and fix witnessing M and k. By a standard Fried-

berg jump inversion construction, fix a and b forming a minimal pair

over 0(3k) with a′ = b′ = 0(ω). By jump inversion again, there are c

and d both above 0(2k) with c(k) = a and d(k) = b.
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Note that c ∈ F : for C ∈ c, if n ≤ k, C(n) >T C >T ∅(2k) >T ∅(2n); if

n > k, C(n) >T C(k+1) = ∅(ω) >T ∅(2n). Further, all of these reductions

are uniform. Similarly, d ∈ F . Thus there is an Mc ∈ c and an Md ∈ d

with

ThΣk
(Mc) = ThΣk

(Md) = ThΣk
(M).

Then ThΣk
(M) ∈ Σ0

k(c) ⊂ ∆0
1(a), and ThΣk

(M) ∈ Σ0
k(d) ⊂ ∆0

1(b).

By our choice of a and b, ThΣk
(M) ∈ ∆0

1(0(3k)), and so there is a 0(3k)-

computable model of ThΣk
(M). But clearly no arithmetical degree can

be in F , which is a contradiction. �

Theorem 24. There is a structure M with DgSp(M,∼=) =

DgSp(M,≡) = F .

Proof. Our structure will be an effective disjoint unionM =
⊔
n∈ωMn.

InMn, we will code ∅(2n) in a manner than can be decoded by the nth

jump. Our language for Mn will be {Pi, Ni}i∈ω ∪ {→}, where the Pi

and Ni are unary relations, and → is a binary relation.

We recall the following trees (in the language of directed graphs),

originally due to Hirschfeldt and White [8]:

• A1 is the tree consisting of only the root;

• E1 is the tree where the root has infinitely many children, and

all of these children are leaves;

· · ·

Figure 1. The tree E1.

• Ak+1 is the tree where the root has infinitely many children all

of whose subtrees are a copy of Ek;
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· · ·EkEkEkEkEk

Figure 2. The tree Ak+1.

• Ek+1 is the tree where the root has infinitely many children

whose subtrees are a copy of Ek, and also has infinitely many

children whose subtrees are a copy Ak.

· · ·EkEkEk· · ·AkAkAk

Figure 3. The tree Ek+1.

Hirschfeldt and White showed that given a Σ0
k predicate, one can com-

putably construct a tree T which is isomorphic to Ek if the predicate

holds, and is isomorphic to Ak if it fails, and further this construction

is uniform in an index for the predicate.

Also, there is a first-order Σk formula that holds of the root of the

Ek tree, but does not hold of the root of the Ak tree. We define

these recursively: define ϕ1(x) : ∃z[x → z]; define ϕk+1(x) : ∃z[x →
z ∧ ¬ϕk(z)].

We now constructMn as follows: for each i, there is a unique element

x with M |= Pi(x), and x is the root of a tree of type En+1 if i ∈ ∅(2n)

and of type An+1 if i 6∈ ∅(2n); conversely there is a unique element y

with M |= Ni(y), and y is the root of a tree of type An+1 if i ∈ ∅(2n)

and of type En+1 if i 6∈ ∅(2n).

We claim that if X ∈ F , then X uniformly computes a copy ofMn.

For ∅(2n) ∈ ∆0
n+1(X), and thus for the x and y with Pi(x) and Ni(y),

we can construct the trees rooted at x and y computably relative to X

as described above.
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Conversely, we claim that if X uniformly computes structures

(Ln)n∈ω with Ln elementarily equivalent to Mn, then X ∈ F . For

i ∈ ∅(2n) ⇐⇒ (∃x ∈ Ln)[Pi(x)∧ϕn+1(x)] ⇐⇒ (∀y ∈ Ln)[Ni(y)⇒ ¬ϕn+1(y)].

Thus ∅(2n) ∈ ∆0
n+1(X), and further the code is obtained uniformly. �
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