DEGREE SPECTRA OF STRUCTURES RELATIVE TO EQUIVALENCE RELATIONS

EKATERINA FOKINA, PAVEL SEMUKHIN, AND DANIEL TURETSKY

Abstract

A standard way to capture the inherent complexity of the isomorphism type of a countable structure is to consider the collection of all Turing degrees relative to which a given structure has a computable isomorphic copy. This set is called the degree spectrum of structure. Similarly, to characterize the complexity of models of a theory, one may consider the collection of all degrees relative to which the theory has a computable model. In this case we get the spectrum of the theory.

In this paper we generalize these two notions to arbitrary equivalence relations. For a structure \mathcal{A} and an equivalence relation E, we define the degree spectrum $\operatorname{DgSp}(\mathcal{A}, E)$ of \mathcal{A} relative to E to be the set of all degrees capable of computing a structure \mathcal{B} that is E-equivalent to \mathcal{A}. Then the standard degree spectrum of \mathcal{A} is $\operatorname{DgSp}(\mathcal{A}, \cong)$ and the degree spectrum of the theory of \mathcal{A} is $\operatorname{DgSp}(\mathcal{A}, \equiv)$. We consider the relations $\equiv_{\Sigma_{n}}\left(\mathcal{A} \equiv_{\Sigma_{n}} \mathcal{B}\right.$ iff the Σ_{n} theories of \mathcal{A} and \mathcal{B} coincide) and study degree spectra with respect to $\equiv_{\Sigma_{n}}$.

1. Introduction

For a countable structure \mathcal{A}, its degree spectrum $\operatorname{DgSp}(\mathcal{A})$ was defined by Richter in [11] and consists of the Turing degrees of all isomorphic copies of \mathcal{A}. As shown by Knight in [10], in all nontrivial cases, the degree spectrum of a structure is closed upward. Degree

Fokina acknowledges the support of the Austrian Science Fund FWF through the project P 27527. Semukhin and Turetsky acknowledge the support of the Austrian Science Fund FWF through the project I 1238.
spectra of structures with various model-theoretic and algebraic properties have been widely studied; an overview of the current situation can be found, e.g., in [3]. Probably the simplest example of a degree spectrum is a cone above a Turing degree d. On the other hand, no non-degenerate finite or countable union of cones can be a degree spectrum [13]. Slaman and Wehner in [12, 14] gave examples of structures with the degree spectrum consisting of exactly the non-computable degrees. In [9] Kalimullin constructed an example of a structure with its degree spectrum equal to all the non- Δ_{2}^{0} degrees. Greenberg, Montalbán and Slaman showed that non-hyperarithmetical degrees form a spectrum of a structure in [6].

For a theory T, the degree spectrum of T was defined in [1]. It consists of all degrees of countable models of T. Some of the known examples of the spectra of theories include [1]: cones, a non-degenerate union of two cones, exactly the PA degrees, exactly the 1-random degrees. On the other hand, the authors of [1] prove that the collection of non-hyperarithmetical degrees is not the spectrum of a theory. In particular, these examples show that not every spectrum of a structure is a spectrum of a theory and, vice versa, not every spectrum of a theory is a spectrum of a structure.

In this paper we suggest to consider the following generalization of these notions to arbitrary equivalence relations.

Definition 1. The degree spectrum of a countable structure \mathcal{A} with universe ω relative to the equivalence relation E is
$D g S p(\mathcal{A}, E)=\{\mathbf{d} \mid$ there exists a d-computable $\mathcal{B} E$-equivalent to $\mathcal{A}\}$.
A related notion was independently introduced by L. Yu in [15]: for an equivalence relation E, a reduction \leqslant_{r} over 2^{ω} and a real $x \in 2^{\omega}$, the (E, r)-spectrum of x is the set $\operatorname{Spec}_{E, r}(x)=\left\{y \in 2^{\omega}: \exists z \leqslant_{r}\right.$
$y(E(z, x))\}$. This definition is related to our Definition 1 as follows:

$$
\operatorname{DgSp}(\mathcal{A}, E)=\left\{\operatorname{deg}_{T}(y): y \in \operatorname{Spec}_{E, T}(D(\mathcal{A}))\right\}
$$

where $D(\mathcal{A})$ is the atomic diagram of \mathcal{A}.
The classical degree spectrum of \mathcal{A} is $\operatorname{DgSp}(\mathcal{A}, \cong)$, the degree spectrum of \mathcal{A} under isomorphism, while the degree spectra of the theory of \mathcal{A} is $\operatorname{DgSp}(\mathcal{A}, \equiv)$, the degree spectrum of \mathcal{A} under elementary equivalence.

In this paper, instead of considering the full theory of a structure, as for theory spectra, we consider Σ_{n}-fragments of theories and the corresponding equivalence relations $\equiv_{\Sigma_{n}}$ (two structures are $\equiv_{\Sigma_{n}}$-equivalent if their Σ_{n}-theories coincide). We also write $\mathcal{A} \equiv_{\Sigma_{n}} \mathcal{B}$ when \mathcal{A} and \mathcal{B} are Σ_{n}-equivalent. We call $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{n}}\right)$ the Σ_{n}-spectrum of \mathcal{A}. We will study what kinds of spectra are possible with respect to these equivalence relations.

Degree spectra with respect to another natural equivalence relation, that of bi-embeddability, are considered in [4].

2. Two cones

It is well-known that the degree spectrum of a structure cannot be the union of two cones [13]. On the other hand, the authors of [1] built a theory T whose spectrum is equal to a non-degenerate union of two cones. For Σ_{n}-spectra, the situation depends on n.

We start with a simple observation.
Lemma 2. Two relational structures \mathcal{A} and \mathcal{B} are Σ_{1}-equivalent iff they have the same finite substructures (in finite sublanguages).

Proof. Suppose $\mathcal{A} \equiv_{\Sigma_{1}} \mathcal{B}$. Choose an arbitrary finite substructure \mathcal{A}_{0} of \mathcal{A} of a finite sublanguage. As its language is finite, we can write its atomic diagram $D\left(\mathcal{A}_{0}\right)$ as a single first order sentence $\varphi(\bar{a})$ with
parameters \bar{a} from A_{0}. Then $\mathcal{A} \vDash \exists \bar{x} \varphi(\bar{x})$, where $|\bar{x}|=|\bar{a}|$. By $\Sigma_{1^{-}}$ equivalence, $\mathcal{B} \models \exists \bar{x} \varphi(\bar{x})$. Let \bar{b} witness φ in \mathcal{B}. Then the finite substructure \mathcal{B}_{0} of \mathcal{B} with domain \bar{b} and with relation symbols that appear in φ is isomorphic to \mathcal{A}_{0}.

Suppose now that \mathcal{A} and \mathcal{B} have the same finite substructures in finite sublanguages. Assume $\mathcal{A} \vDash \exists \bar{x} \varphi(\bar{x})$. Let \bar{a} be a witness. Consider the finite substructure \mathcal{A}_{0} of \mathcal{A} with the universe \bar{a} and the language consisting of the relation symbols used in φ. By assumption, there is a finite substructure \mathcal{B}_{0} of \mathcal{B} in the same language which is isomorphic to \mathcal{A}_{0}. Then $\mathcal{B}_{0} \models \exists \bar{x} \varphi(\bar{x})$, and thus $\mathcal{B} \models \exists \bar{x} \varphi(\bar{x})$.

Theorem 3. No Σ_{1}-spectrum of a structure can be a non-degenerate union of two cones.

Proof. Let \mathcal{A} and \mathcal{B} be Σ_{1}-equivalent structures that have degrees a and \mathbf{b}, respectively, where \mathbf{a} and \mathbf{b} are incomparable. For simplicity, we use the standard assumption that the language of the structures is relational. We build a Σ_{1}-equivalent structure \mathcal{C} of degree \mathbf{c}, such that \mathbf{c} is neither above a nor above \mathbf{b}.

The universe of \mathcal{C} will be ω. At each stage s we define a finite substructure \mathcal{C}_{s} with the universe an initial segment of ω. To make sure that \mathcal{C} computes neither \mathcal{A} nor \mathcal{B}, we as usually consider the list of requirements of the form $\Phi_{e}^{\mathcal{C}} \neq \mathcal{A}$ and $\Phi_{e}^{\mathcal{C}} \neq \mathcal{B}$. Assume that the next requirement is of the form $\Phi_{e}^{\mathcal{C}} \neq \mathcal{A}$, so we want to diagonalize against \mathcal{C} computing \mathcal{A}. Let $\left\{\mathcal{N}_{j}\right\}_{j \in \omega}$ be a list of finite structures, such that each \mathcal{N}_{j} :

- extends \mathcal{C}_{s},
- has the universe an initial segment of ω,
- is isomorphic to a finite substructure of \mathcal{B} in a finite language,
- every such substructure of \mathcal{B} appears in the list.

Obviously, we can construct such a list computable in \mathcal{B}. Now we ask if there are n and \mathcal{N}_{j} such that $\Phi_{e}^{\mathcal{N}_{j}}(n) \downarrow \neq \mathcal{A}(n)$. If the answer is
positive, we let \mathcal{C}_{s+1} be equal to such \mathcal{N}_{j}. So the requirement $\Phi_{e}^{\mathcal{C}} \neq \mathcal{A}$ will be satisfied.

On the other hand, if the answer is negative, then for all n and \mathcal{N}_{j} either $\Phi_{e}^{\mathcal{N}_{j}}(n) \uparrow$ or $\Phi_{e}^{\mathcal{N}_{j}}(n) \downarrow=\mathcal{A}(n)$. Suppose that in the end of the construction $\Phi_{e}^{\mathcal{C}}$ is everywhere defined. Then for every n there exists an \mathcal{N}_{j} such that $\Phi_{e}^{\mathcal{N}_{j}}(n) \downarrow=\mathcal{A}(n)$. So we can compute \mathcal{A} from \mathcal{B}, which is a contradiction. Therefore, in this case $\Phi_{e}^{\mathcal{C}}$ must be partial, and the requirement is again satisfied.

Note that the above construction guarantees that every substructure of \mathcal{C} in a finite sublanguage appears in \mathcal{A} and \mathcal{B}. To ensure that $\mathcal{C} \equiv_{\Sigma_{1}}$ \mathcal{A}, \mathcal{B}, we also add stages where we extend the previously built \mathcal{C}_{s} to include the next finite substructure of \mathcal{A} or \mathcal{B}.

Theorem 4. There is a structure \mathcal{A} with $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{2}}\right)$ equal to the union of two non-degenerate cones.

Proof. If we allow infinite languages, the statement follows directly from the result of Andrews and Miller [1], where they build a theory T with the spectrum of T consisting of exactly two cones. Let \mathcal{A} be a model of T and let $\mathcal{B} \equiv_{\Sigma_{2}} \mathcal{A}$. The theory T is a complete theory that can be axiomatized using $\Sigma_{2^{-}}$and Π_{2}-sentences. Thus, \mathcal{B} is also a model of T. In other words, $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{2}}\right)=\operatorname{DgSp}(\mathcal{A}, \equiv)$, which is the union of two cones.

The result is also true for finite languages, for example, using the transformation from [7] of arbitrary structures into graphs. It is not hard to show that the transformation preserves Σ_{2}-equivalence.

3. All but computable

According to [12] and [14], there exist structures with the classical degree spectrum containing exactly all the non-computable degrees. Moreover, as the structure from [12] is not elementary equivalent to a computable structure, the built example actually shows that the degree
spectrum of the theory of the constructed structure consists of all the non-computable degrees.

The theory of the structure built in [12] is $\Sigma_{3^{-}}$and Π_{3}-axiomatizable, however minor modifications can make it axiomatizable using $\Sigma_{2^{-}}$and Π_{2}-sentences.

Theorem 5. There exists a countable structure \mathcal{A}, such that $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{2}}\right)$ consists of exactly all the non-computable Turing degrees. The same is also true for $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{n}}\right)$, for all $n \geqslant 2$.

On the other hand, for Σ_{1}-spectra this is again not true:
Proposition 6. No structure \mathcal{A} may have its Σ_{1}-spectrum consisting of exactly the non-computable degrees.

Proof. The Σ_{1}-spectrum of any structure \mathcal{A} has the form $\{\mathbf{d} \mid X$ is \mathbf{d}-c.e. $\}$, where X is the set of Gödel indices of the sentences from the Σ_{1}-theory of \mathcal{A}. As shown in [2], if the collection of oracles that enumerate any set X has positive measure, then X is c.e. So, if $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{1}}\right)$ contains all non-computable degrees, then the Σ_{1}-theory of \mathcal{A} is c.e. It is not hard to show that if a Σ_{1}-theory is c.e., then it has a computable model (see Theorem 10 below for a more general statement). This completes the proof of the proposition.

Similar considerations prove the following:

Corollary 7.

(1) If $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{1}}\right)$ contains all non-computable c.e. degrees, it also contains $\mathbf{0}$.
(2) If $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{1}}\right)$ contains all low degrees, it also contains $\mathbf{0}$.
(3) If $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{1}}\right)$ contains all high degrees, it also contains $\mathbf{0}$.
(4) If $\operatorname{DgSp}\left(\mathcal{A} \equiv, \Sigma_{1}\right)$ contains all PA degrees, it also contains $\mathbf{0}$.
(5) If $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{1}}\right)$ contains all degrees above \mathbf{a}, it also contains a.

Proposition 6 and Corollary 7 can also be proved by coding a special kind of a minimal pair of degrees into the above collections of degrees.

Definition 8. The sets X and Y form a Σ_{1}-minimal pair if $\Sigma_{1}(X) \cap$ $\Sigma_{1}(Y)=\Sigma_{1}^{0}$.

For example, if the set of all non-computable degrees were a Σ_{1-} spectrum, there would exist structures \mathcal{A}, \mathcal{B} of degrees \mathbf{a}, \mathbf{b}, respectively, where \mathbf{a} and \mathbf{b} form a Σ_{1}-minimal pair. As the Σ_{1}-theory $T_{\Sigma_{1}}$ is c.e. in \mathcal{A} and in \mathcal{B}, it must be c.e. In this case it must have a computable model, so the Σ_{1}-spectrum must contain $\mathbf{0}$. Analogously for results from Corollary 7. A similar idea was used in [1] to prove that certain collections of degrees are not structure spectra.

We use Σ_{1}-minimal pairs to prove that further collections of degrees cannot be Σ_{n}-degree spectra, for suitable $n \in \omega$. We need the following two facts.

Observation 9. For any C, if $A \oplus B$ is sufficiently generic, then $A \oplus C$ and $B \oplus C$ form a Σ_{1}^{0}-minimal pair over C. That is, $\Sigma_{1}^{0}(A \oplus C) \cap \Sigma_{1}^{0}(A \oplus$ $C)=\Sigma_{1}^{0}(C)$.

Theorem 10. If T is a complete consistent theory in computable language \mathcal{L}, and S is the Σ_{n}-fragment of T (equivalently, S is the Σ_{n} theory of a structure), and S is c.e., then S has a computable model.

Proof. We perform an effective Henkin construction. Let our universe be $\left\{c_{i}\right\}_{i \in \omega}$, and let $\left\{\exists \bar{x} \varphi_{i}(\bar{x})\right\}_{i \in \omega}$ be an enumeration of all Σ_{n}-sentences in \mathcal{L}, where φ_{i} is a Π_{n-1}-formula. Let $\left\{\theta_{i}\right\}_{i \in \omega}$ be an enumeration of all Σ_{n-1}-sentences in $\mathcal{L} \cup\left\{c_{i}\right\}_{i \in \omega}$. We will compute the ($n-1$)-diagram of our structure.

During the construction, we will have a set of sentences δ_{s}, which is the fragment of the diagram we have committed to so far. We begin with $\delta_{0}=\emptyset$. We also keep a stage t_{s} which is the stage we have enumerated S to. We begin with $t_{0}=0$.

At stage $s+1$, let $\hat{\delta}_{s}$ be made from δ_{s} by replacing the constant for c_{i} with the new variable y_{i}, and similarly $\hat{\theta}_{s}(\bar{y})$ (where the same substitution $c_{i} \mapsto y_{i}$ is made).

Define the following:

$$
\begin{aligned}
\psi_{t}^{s,+} & =\exists \bar{y} \exists \bar{z}\left[\begin{array}{c}
\hat{\theta}_{s}(\bar{y}) \wedge\left(\bigwedge_{\rho \in \hat{\delta}_{s}} \rho(\bar{y})\right) \wedge\left(\bigwedge_{\exists \bar{x} \tau(\bar{x}, \bar{y}) \in \hat{\delta}_{s}}(\exists \bar{w} \in \bar{z}) \tau(\bar{w}, \bar{y})\right) \\
\wedge\left(\bigwedge_{\exists \bar{x} \varphi_{i}(\bar{x}) \in S_{t}}^{i<s}(\exists \bar{w} \in \overline{y z}) \varphi_{i}(\bar{w})\right) \wedge\left(\bigwedge_{\exists \bar{x} \varphi_{i}(\bar{x}) \notin S_{t}}^{i<s}(\forall \bar{w} \in \overline{y z}) \neg \varphi_{i}(\bar{w})\right)
\end{array}\right], \\
\psi_{t}^{s,-}= & \exists \bar{y} \exists \bar{z}\left[\begin{array}{c}
\neg \hat{\theta}_{s}(\bar{y}) \wedge\left(\bigwedge_{\rho \in \hat{\delta}_{s}} \rho(\bar{y})\right) \wedge\left(\bigwedge_{\exists \bar{x} \tau(\bar{x}, \bar{y}) \in \hat{\delta}_{s}}(\exists \bar{w} \in \bar{z}) \tau(\bar{w}, \bar{y})\right) \\
\left.\wedge\left(\bigwedge_{\exists \bar{x} \varphi_{i}(\bar{x}) \in S_{t}}^{i<s}(\exists \bar{w} \in \overline{y z}) \varphi_{i}(\bar{w})\right) \wedge\left(\bigwedge_{\exists \exists \bar{x} \varphi_{i}(\bar{x}) \notin S_{t}}^{i<s}(\forall \bar{w} \in \overline{y z}) \neg \varphi_{i}(\bar{w})\right)\right] .
\end{array} . .\right.
\end{aligned}
$$

where " $\exists \bar{w} \in \overline{y z}$ " means there is a tuple of the appropriate length made from the elements of the tuples \bar{y} and \bar{z}, and similarly for " $\forall \bar{w} \in \overline{y z}$ ". Note that both $\psi_{t}^{s,+}$ and $\psi_{t}^{s,-}$ are Σ_{n}-sentences in \mathcal{L}. We enumerate S until we see some $\psi_{t}^{s,+}$ or $\psi_{t}^{s,-}$ enumerated with $t>t_{s}$. We will argue in the verification that this must eventually occur.

Suppose we have seen $\psi_{t}^{s,+}$ be enumerated. Fix some tuple $\bar{c} \in$ $\left\{c_{i}\right\}_{i \in \omega}$ with $|\bar{c}|=|\bar{z}|$ and none of \bar{c} occurring in δ_{s} or θ_{s}. Fix a bijection between \bar{c} and \bar{z}. Define the map f such that for $z \in \bar{z}, f(z)$ follows this bijection, and for $y_{j}, f\left(y_{j}\right)=c_{j}$. Note that this is an injection from the variables occurring in $\overline{y z}$ into $\left\{c_{i}\right\}_{i \in \omega}$.

For every sentence $\exists \bar{x} \varphi_{i}(\bar{x}) \in S_{t}$, fix a witnessing tuple \bar{w}_{i}. Note that we can identify such \bar{w} effectively: since " $\exists \bar{w} \in \overline{y z} "$ is a finite disjunction, we can make more specific versions of $\psi_{t}^{s,+}$ by retaining only a single disjunct for every φ_{i}. Eventually, one of these more specific sentences must be enumerated. Similarly, for every sentence $\exists \bar{x} \tau(\bar{x}, \bar{y}) \in \delta_{s}$, fix a witnessing tuple \bar{w}_{τ}.

Define $t_{s+1}=t$ and

$$
\begin{aligned}
\delta_{s+1}= & \delta_{s} \cup\left\{\theta_{s}\right\} \cup\left\{\tau\left(f\left(\bar{w}_{\tau}\right), f(\bar{y})\right): \exists \bar{x} \tau(\bar{x}, \bar{y}) \in \hat{\delta}_{s}\right\} \\
& \cup\left\{\varphi_{i}\left(f\left(\overline{w_{i}}\right)\right): i<s \& \exists \bar{x} \varphi_{i}(\bar{x}) \in S_{t}\right\} \\
& \cup\left\{\neg \varphi_{i}(f(\bar{w})): i<s \& \bar{w} \in \overline{y z} \& \exists \bar{x} \varphi_{i}(\bar{x}) \notin S_{t}\right\} .
\end{aligned}
$$

If instead $\psi_{t}^{s,-}$ is enumerated, proceed similarly except define δ_{s+1} with $\neg \theta_{s}$ instead of θ_{s}. Once t_{s+1} and δ_{s+1} are defined, proceed on to stage $s+2$.

Verification:
Claim 10.1. For every s, $\exists \bar{y} \bigwedge_{\rho \in \hat{\delta}_{s}} \rho(\bar{y}) \in S$.
Proof. Induction.
In particular, the diagram $D=\left\{\delta_{s}\right\}_{s \in \omega}$ we build is consistent.
Claim 10.2. For every s, we will eventually see some $\psi_{t}^{s,+}$ or $\psi_{t}^{s,-}$ enumerated into S.

Proof. We know that $\exists \bar{y} \hat{\delta}_{s}(\bar{y})$ is in S and thus in T. Since T is complete, at least one of $\exists \bar{y}\left(\hat{\delta}_{s}(\bar{y}) \wedge \hat{\theta}_{s}(\bar{y})\right)$ or $\exists \bar{y}\left(\hat{\delta}_{s}(\bar{y}) \wedge \neg \hat{\theta}_{s}(\bar{y})\right)$ is in T, and by counting quantifiers, must thus be in S.

Let t be such that $S_{t} \upharpoonright_{s}=S \upharpoonright_{s}$. Then at least one of $\psi_{t}^{s,+}$ or $\psi_{t}^{s,-}$ is in T, and thus is in S.

Claim 10.3. D is computable.
Proof. We decide θ_{s} at stage s.
Let \mathcal{M} be the structure with universe $\left\{c_{i}\right\}_{i \in \omega}$ determined by the quantifier-free fragment of D.

Claim 10.4. $\mathcal{M} \models D$.

Proof. Induction on sentence complexity. For quantifier-free sentences, this is immediate.

Suppose $\exists \bar{x} \tau(\bar{x}, \bar{b}) \in D$. Then at some sufficiently large stage, we act to put $\tau(\bar{c}, \bar{b}) \in D$ for some \bar{b}. By the inductive hypothesis, $\mathcal{M} \models$ $\tau(\bar{c}, \bar{b})$, so $\mathcal{M} \models \exists \bar{x} \tau(\bar{x}, \bar{b})$.

Suppose $\forall \bar{x} \tau(\bar{x}, \bar{b}) \in D$. Then for any \bar{c}, it cannot be that $\neg \tau(\bar{c}, \bar{b}) \in$ D, as that would violate the consistency of D. Since we eventually act
to decide $\theta=\tau(\bar{c}, \bar{b})$, it must be that $\tau(\bar{c}, \bar{b}) \in D$. By the inductive hypothesis, $\mathcal{M} \models \tau(\bar{c}, \bar{b})$. Since \bar{c} was arbitrary, $\mathcal{M} \models \forall \bar{x} \tau(\bar{x}, \bar{b})$.

Claim 10.5. $\mathcal{M} \models S$.
Proof. If $\exists \bar{x} \varphi_{i}(\bar{x}) \in S_{t}$, then at any stage with $i<s$ and $t<t_{s}$, we will place the sentence $\varphi_{i}(\bar{c})$ in D for some \bar{c}, and thus $\mathcal{M} \models \exists \bar{x} \varphi_{i}(\bar{x})$.

If $\exists \bar{x} \varphi_{i}(\bar{x}) \notin S$, then at every stage with $i<s$, we will place the sentence $\neg \varphi_{i}(\bar{c})$ in D for every \bar{c} mentioned so far in the construction. Thus $\mathcal{M} \not \vDash \varphi_{i}(\bar{c})$ for any \bar{c}, and so $\mathcal{M} \not \vDash \exists \bar{x} \varphi_{i}(\bar{x})$.

This completes the proof.
We now use Observation 9 und Theorem 10 to prove that non- $\Delta_{n}^{0}{ }^{-}$ degrees cannot be a Σ_{n}-spectrum.

Theorem 11. The non- Δ_{n}^{0} degrees are not the Σ_{n}-spectrum of any structure.

Proof. Suppose there were a structure \mathcal{M} with $\operatorname{Spec}_{\Sigma_{n}}(\mathcal{M})$ consisting precisely of the non- Δ_{n}^{0} degrees. Using Observation 9, fix degrees a and b forming a Σ_{1}^{0}-minimal pair over $\mathbf{0}^{(n-1)}$, with \mathbf{a} and \mathbf{b} not arithmetical. By jump inversion, there are degrees \mathbf{c} and \mathbf{d} with $\mathbf{c}^{(n-1)}=\mathbf{a}$ and $\mathbf{d}^{(n-1)}=\mathbf{b}$, and neither \mathbf{c} nor \mathbf{d} are arithmetical.

By assumption, $\mathbf{c}, \mathbf{d} \in \operatorname{Spec}_{\Sigma_{n}}(\mathcal{M})$. Let S be the Σ_{n}-theory of \mathcal{M}. Then $S \in \Sigma_{n}^{0}(\mathbf{c})=\Sigma_{1}^{0}(\mathbf{a})$ and also $S \in \Sigma_{n}^{0}(\mathbf{d})=\Sigma_{1}^{0}(\mathbf{b})$. Since a and \mathbf{b} form a Σ_{1}^{0}-minimal pair over $\mathbf{0}^{(n-1)}, S \in \Sigma_{1}^{0}\left(\mathbf{0}^{(n-1)}\right)$, and thus by, Theorem 10, $\mathbf{0}^{(n-1)}$ can compute a model of S. This model has Δ_{n}^{0}-degree, contrary to the assumption.

4. A NON-TRIVIAL SPECTRUM FOR Σ_{1}-EQUIVALENCE

In view of the results about Σ_{1}-spectra from the previous two sections, it is natural to ask whether there exist Σ_{1}-spectra that are not cones. The next theorem answers this question positively.

Theorem 12. There exists a structure \mathcal{A} such that its Σ_{1}-spectrum $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{1}}\right)$ cannot be presented as a cone above a degree \mathbf{a}.

Proof. As we already noted above, Σ_{1}-spectra must have the form $\{\mathbf{d} \mid X$ is \mathbf{d}-c.e. $\}$, where X is the set of Gödel indices of the sentences from the Σ_{1}-theory. On the other hand, every set of degrees of the form $\{\mathbf{d} \mid X$ is \mathbf{d}-c.e. $\}$, for some X, is a Σ_{1}-spectrum of a structure \mathcal{A}_{X} : the structure \mathcal{A}_{X} contains an ω-chain x_{0}, x_{1}, \ldots using a binary predicate $P\left(x_{n}, x_{n+1}\right)$ (and a constant that fixes x_{0} as the first element of the chain). Whenever n is enumerated into X, we define $Q\left(x_{n}, y_{n}\right)$, where y_{n} is a new element that from now on witnesses $n \in X$. It is clear that $\operatorname{DgSp}\left(\mathcal{A}, \equiv_{\Sigma_{1}}\right)=\{\mathbf{d} \mid X$ is \mathbf{d}-c.e. $\}$.

Richter studied sets of this form in [11]. She constructed a noncomputably enumerable set X, which is computably enumerable in sets B and C forming a minimal pair. Thus, the degrees that enumerate X do not form a cone. The corresponding structure \mathcal{A}_{X}, built as described above, witnesses the statement of the theorem.

5. Relations between Σ_{n}-Spectra

In this section we study relations between Σ_{n}-spectra, for various n.
Proposition 13. If S is a Σ_{n}-spectrum then $\left\{\mathbf{d} \mid \mathbf{d}^{\prime} \in S\right\}$ is a $\Sigma_{n+1}{ }^{-}$ spectrum.

Proof. The proof is essentially the same as the proof of Lemma 2.8 in [1] which is based on Marker's construction. In that lemma it is proved that if S is a theory spectrum, then so is $\left\{\mathbf{d} \mid \mathbf{d}^{\prime} \in S\right\}$. The idea of the Marker's construction is to build a new theory T^{\prime} in such a way that every predicate of the original theory T is interpreted by both $\Sigma_{2^{-}}$and Π_{2}-formula in T^{\prime}. Using this, one can make sure that for an arbitrary sentence φ from T, the number of quantifier alternations in its interpretation φ^{\prime} in T^{\prime} increases only by one. Therefore, if the
original theory is axiomatizable by $\Sigma_{n^{-}}$or Π_{n}-sentences, then the new theory is axiomatizable by $\Sigma_{n+1^{-}}$or $\Pi_{n+1^{-}}$-sentences.

This result allows us to prove that some collections of degrees are Σ_{n}-spectra.

Proposition 14. Non-low ${ }_{n}$ degrees form a Σ_{n+2}-spectrum.
Proof. By Theorem 5, the set of degrees $\left\{\mathbf{d}: \mathbf{d} \not \mathbb{Z}_{T} \mathbf{0}^{(n)}\right\}$ is a $\Sigma_{2^{-}}$ spectrum. Applying Proposition $13 n$ times we get the desired result.

Proposition 15. The hign n_{n} degrees form a Σ_{n+1}-spectrum of a structure.

Proof. We build a structure \mathcal{A} with its Σ_{n+1}-spectrum consisting of exactly the high_{n} degrees. Let \mathcal{B} be a structure that has the Σ_{1}-spectrum of the form $\left\{\mathbf{d}: \mathbf{d} \geqslant_{T} \mathbf{0}^{(n+1)}\right\}$. Applying Proposition $13 n$ times, we get \mathcal{A} with the desired Σ_{n+1} spectrum.

Recall that by Corollary 7, high degrees do not form a Σ_{1}-spectrum. We are going to extend this result by showing that high h_{n} degrees never form a Σ_{n}-spectrum.

Theorem 16. The high ${ }_{n}$ degrees do not form a Σ_{n}-spectrum of a structure.

The proof follows from Proposition 17 and Theorem 18, where we compare the descriptive complexity of $\left\{X \in \omega^{\omega}: X\right.$ is $\left.\operatorname{high}_{n}\right\}$ and $\left\{X \in \omega^{\omega}: X \in S\right\}$, for a Σ_{n}-spectrum S.

Proposition 17. Let T be a Σ_{n}-fragment of a (complete) theory. Then $\{X: X$ computes (the atomic diagram of) a model of $T\}$ is a $\boldsymbol{\Sigma}_{n+2^{-}}^{0}$ class.

Proof. X computes a model of T iff

$$
\exists \Phi \forall \varphi \in \Sigma_{n}\left[\varphi \in T \Longleftrightarrow \Phi^{X} \models \varphi\right] .
$$

Here Φ^{X} is the X-computable structure computed by Φ with oracle X. Then for a Σ_{n} sentence φ, the complexity of " $\Phi^{X} \models \varphi$ " is $\Sigma_{n}^{0, X}$. Considering T as a parameter, we get the desired complexity $\boldsymbol{\Sigma}_{n+2}^{0}$.

Theorem 18. $\left\{X \in \omega^{\omega}: X\right.$ is high $\left.h_{n}\right\}$ is not a Σ_{n+2}^{0}-class.
The proof will follow from several claims. The goal is, for every Σ_{n+2}^{0}-class \mathcal{C}, to build a function f such that $f \in \mathcal{C} \Longleftrightarrow f$ is not high $_{n}$.

Definition 19. Define a notion of forcing $(\mathbb{P}, \leqslant \mathbb{P})$ where the conditions are $\left(\sigma_{0}, \ldots, \sigma_{n-1}\right) \in\left(\omega^{<\omega}\right)^{n}$, and $\bar{\sigma} \geq_{\mathbb{P}} \bar{\tau}$ if and only if the following hold:
(1) $\sigma_{m} \subseteq \tau_{m}$ for all $m<n$; and
(2) For every $m<n-1$ and every $x \in \operatorname{dom}\left(\sigma_{m+1}\right)$, if $\langle x, t\rangle \in$ $\left(\operatorname{dom}\left(\tau_{m}\right)-\operatorname{dom}\left(\sigma_{m}\right)\right)$, then $\tau_{m}(\langle x, t\rangle)=\sigma_{m+1}(x)$.

For a function h, define $\mathbb{P}_{h}=\left\{\bar{\sigma} \in \mathbb{P}: \forall x \in \operatorname{dom}\left(\sigma_{n-1}\right)\left[\sigma_{n-1}(x) \geq\right.\right.$ $h(x)]\}$.

For G a filter, define $f_{m}^{G}=\bigcup_{\bar{\sigma} \in G} \sigma_{m}$.
Note that if G is sufficiently generic, then the f_{m}^{G} will be total functions with $f_{m+1}^{G}(x)=\lim _{t} f_{m}^{G}(\langle x, t\rangle)$ for all x and all $m<n-1$. Intuitively, f_{m+1}^{G} is the jump of f_{m}^{G}. We will not actually verify this, but it guides our intuition.

Claim 19.1. Fix h.

For \mathcal{A} a Σ_{m}^{0}-class with $m<n$, if $\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{A}\right]$, then there is $\bar{\tau} \leq_{\mathbb{P}} \bar{\sigma}$ with $\bar{\tau} \in \mathbb{P}_{h}$ and $\left(\tau_{0}, \ldots, \tau_{m-1}, \emptyset, \ldots, \emptyset\right) \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{A}\right]$.

For \mathcal{B} a Π_{m}^{0}-class with $m<n$, if $\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{B}\right]$, then $\left(\sigma_{0}, \ldots, \sigma_{m}, \emptyset, \ldots, \emptyset\right) \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{B}\right]$.

Proof. We prove the two parts of the claim simultaneously, by induction.

For \mathcal{A} open, if $\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{A}\right]$, then it must be that for every extension $\bar{\rho} \leq_{\mathbb{P}} \bar{\sigma}$ with $\bar{\rho} \in \mathbb{P}_{h}$, there is an extension $\bar{\tau} \leq_{\mathbb{P}} \bar{\rho}$ with $\bar{\tau} \in \mathbb{P}_{h}$ and $\left[\tau_{0}\right] \subseteq \mathcal{A}$. Then $\left(\tau_{0}, \emptyset, \ldots, \emptyset\right) \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{A}\right]$, as desired.

For \mathcal{B} closed, if $\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{B}\right]$, then we claim $\left(\sigma_{0}, \sigma_{1}, \emptyset, \ldots, \emptyset\right) \Vdash_{\mathbb{P}}$ $\left[f_{0} \in \mathcal{B}\right]$. For suppose not. Then there is an extension $\bar{\rho} \leq_{\mathbb{P}}$ $\left(\sigma_{0}, \sigma_{1}, \emptyset, \ldots, \emptyset\right)$ with $\bar{\rho} \in \mathbb{P}$ and $\left[\rho_{0}\right] \cap \mathcal{B}=\emptyset$. But note that $\left(\rho_{0}, \sigma_{1}, \ldots, \sigma_{n-1}\right) \leq_{\mathbb{P}} \bar{\sigma}$ and $\left(\rho_{0}, \sigma_{1}, \ldots, \sigma_{n-1}\right) \in \mathbb{P}_{h}$. Since $\left(\rho_{0}, \sigma_{1}, \ldots, \sigma_{n-1}\right) \Vdash_{\mathbb{P}_{h}}\left[f_{0} \notin \mathcal{B}\right]$, this contradicts our assumption for $\bar{\sigma}$.

For \mathcal{A} a $\boldsymbol{\Sigma}_{m+1}^{0}$-class, write $\mathcal{A}=\bigcup_{j} \mathcal{B}_{j}$, where each \mathcal{B}_{j} is a $\boldsymbol{\Pi}_{m}^{0}$-class. If $\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{A}\right]$, then it must be that for every $\bar{\rho} \leq_{\mathbb{P}} \bar{\sigma}$ with $\bar{\rho} \in \mathbb{P}_{h}$, there is an extension $\bar{\tau} \leq_{\mathbb{P}} \rho$ with $\bar{\tau} \in \mathbb{P}_{h}$ and a j with $\bar{\tau} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{B}_{j}\right]$. By induction, $\left(\tau_{0}, \ldots, \tau_{m}, \emptyset, \ldots, \emptyset\right) \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{B}_{j}\right]$. Such a $\bar{\tau}$ suffices for the claim.

For \mathcal{B} a Π_{m+1}^{0}-class, write $\mathcal{B}=\bigcap_{j} \mathcal{A}_{j}$, where each \mathcal{A}_{j} is a Σ_{m}^{0}-class. If $\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{B}\right]$, then we claim $\left(\sigma_{0}, \ldots, \sigma_{m+1}, \emptyset, \ldots, \emptyset\right) \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{B}\right]$. For suppose not. Then there is an extension $\bar{\rho} \leq_{\mathbb{P}}\left(\sigma_{0}, \ldots, \sigma_{m+1}, \emptyset, \ldots, \emptyset\right)$ with $\bar{\rho} \in \mathbb{P}$ and some j with $\bar{\rho} \Vdash_{\mathbb{P}}\left[f_{0} \notin \mathcal{A}_{j}\right]$.

Consider $\left(\rho_{0}, \ldots, \rho_{m}, \sigma_{m+1}, \ldots, \sigma_{n-1}\right)$, which is an extension of $\bar{\sigma}$ and an element of \mathbb{P}_{h}. By choice of $\bar{\sigma}$, there must be a $\bar{\nu} \leq_{\mathbb{P}}$ $\left(\rho_{0}, \ldots, \rho_{m}, \sigma_{m+1}, \ldots, \sigma_{n-1}\right)$ with $\bar{\nu} \in \mathbb{P}_{h}$ and $\bar{\nu} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{A}_{j}\right]$. By induction, there is a $\bar{\tau} \leq_{\mathbb{P}} \bar{\nu}$ with $\left(\tau_{0}, \ldots, \tau_{m-1}, \emptyset, \ldots, \emptyset\right) \Vdash_{\mathbb{P}}$ $\left[f_{0} \in \mathcal{A}_{j}\right]$. But then $\left(\tau_{0}, \ldots, \tau_{m-1}, \rho_{m}, \ldots, \rho_{n-1}\right)$ extends both $\left(\tau_{0}, \ldots, \tau_{m-1}, \emptyset, \ldots, \emptyset\right)$ and $\bar{\rho}$, and thus \mathbb{P}-forces both $\left[f_{0} \in \mathcal{A}_{j}\right]$ and [$\left.f_{0} \notin \mathcal{A}_{j}\right]$, a contradiction.

Claim 19.2. Fix h. For \mathcal{B} a Π_{m}^{0}-class with $m<n$ and $\bar{\sigma} \in \mathbb{P}_{h}$, if $\bar{\sigma} \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{B}\right]$, then $\left(\sigma_{0}, \ldots, \sigma_{m}, \emptyset, \ldots, \emptyset\right) \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{B}\right]$.

Proof. Suppose not. Then there is some $\bar{\rho} \leq_{\mathbb{P}}\left(\sigma_{0}, \ldots, \sigma_{m}, \emptyset, \ldots, \emptyset\right)$ with $\bar{\rho} \in \mathbb{P}_{h}$ and $\bar{\rho} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \notin \mathcal{B}\right]$. By Claim 19.1 applied to the complement of \mathcal{B}, there is a $\bar{\tau} \leq_{\mathbb{P}} \bar{\rho}$ with $\bar{\tau} \in \mathbb{P}_{h}$ and $\left(\tau_{0}, \ldots, \tau_{m-1}, \emptyset, \ldots, \emptyset\right) \Vdash_{\mathbb{P}}$ $\left[f_{0} \notin \mathcal{B}\right]$. So $\left(\tau_{0}, \ldots, \tau_{m-1}, \emptyset, \ldots, \emptyset\right)$ and $\bar{\sigma} \mathbb{P}$-force incompatible statements, but $\left(\tau_{0}, \ldots, \tau_{m-1}, \sigma_{m}, \ldots, \sigma_{n-1}\right)$ is a common extension, which is a contradiction.

Fix $h \in \Delta_{n}^{0}$. Note that if h were computable, \mathbb{P}_{h} and \mathbb{P} would be computably isomorphic, and so the following claim would be immediate. As it is, \mathbb{P}_{h} and \mathbb{P} are only Δ_{n}^{0}-isomorphic, and the claim does not hold for arbitrary notions of forcing which are Δ_{n}^{0}-isomorphic to \mathbb{P}-consider \mathbb{P} with the added requirement that $\sigma_{0}(\langle x, 0\rangle)=\emptyset^{\prime}(x)$.

Recalling our intuition, the claim holds in this case because the $\Delta_{n}^{0}{ }^{-}$ information of \mathbb{P}_{h} only occurs in f_{n-1}^{G}, which is the $(n-1)$ st jump of f_{0}^{G}.

Claim 19.3. If h is Δ_{n}^{0}, and G is sufficiently $\left(\mathbb{P}_{h}, \leqslant_{\mathbb{P}}\right)$-generic, then f_{0}^{G} is not high.

Proof. We begin with the following:
Claim 19.3.1. $\left(f_{0}^{G}\right)^{(n)} \leqslant T \emptyset^{(n)} \oplus \bigoplus_{m<n} f_{m}^{G}$.
Proof. It suffices to show that our oracle can uniformly decide $\left[f_{0}^{G} \in \mathcal{A}\right]$ for any Σ_{n}^{0}-class \mathcal{A}. Fix an effective list of Π_{n-1}^{0}-classes $\left(\mathcal{B}_{j}\right)_{j \in \omega}$ with $\mathcal{A}=\bigcup_{j} \mathcal{B}_{j}$.

By Claims 19.1 and 19.2,

$$
\begin{aligned}
\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \notin \mathcal{A}\right] & \Longleftrightarrow \forall j \forall \bar{\tau} \in \mathbb{P}_{h}\left(\bar{\tau} \leq_{\mathbb{P}} \bar{\sigma} \rightarrow \bar{\tau} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{B}_{j}\right]\right) \\
& \Longleftrightarrow \forall j \forall \bar{\tau} \in \mathbb{P}_{h}\left(\bar{\tau} \leq_{\mathbb{P}} \bar{\sigma} \rightarrow \bar{\tau} \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{B}_{j}\right]\right) .
\end{aligned}
$$

Since \mathcal{B}_{j} is Π_{n-1}^{0}, and \mathbb{P} is a computable notion of forcing, the sentence $\bar{\tau} \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{B}_{j}\right]$ is uniformly Π_{n-1}^{0}. Thus $\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \notin \mathcal{A}\right]$ is uniformly Π_{n}^{0}.

On the other hand, if $f_{0}^{G} \in \mathcal{A}$, then for some $\bar{\sigma} \in G$, $\exists j\left(\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{B}_{j}\right]\right)$. By Claims 19.1 and 19.2 again,

$$
\exists j\left(\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{B}_{j}\right]\right) \Longleftrightarrow \exists j\left(\bar{\sigma} \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{B}_{j}\right]\right),
$$

which is uniformly Σ_{n}^{0}.
Clearly $\bigoplus_{m<n} f_{m}^{G}$ computes G, and so $\emptyset^{(n)} \oplus \bigoplus_{m<n} f_{m}^{G}$ can decide $\left[f_{0} \in \mathcal{A}\right]$ by enumerating $\bar{\sigma} \in G$ until it finds $\bar{\sigma}$ with $\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \notin \mathcal{A}\right]$ or $\exists j\left(\bar{\sigma} \Vdash_{\mathbb{P}_{h}}\left[f_{0} \in \mathcal{B}_{j}\right]\right)$.

It now suffices to show that $\emptyset^{(n+1)} \not \star_{T} \emptyset^{(n)} \oplus \bigoplus_{m<n} f_{m}^{G}$. Suppose not, and let $\Gamma\left(\emptyset^{(n)}, f_{0}^{G}, \ldots, f_{n-1}^{G}\right)=\emptyset^{(n+1)}$. Then consider

$$
D=\left\{\bar{\rho} \in \mathbb{P}_{h}: \exists x \Gamma\left(\emptyset^{(n)}, \bar{\rho}\right)(x) \downarrow \neq \emptyset^{(n+1)}(x)\right\}
$$

By assumption, G does not meet D, and so G avoids D. So fix $\bar{\sigma} \in G$ such that for all $\bar{\rho} \leqslant \mathbb{P} \bar{\sigma}, \bar{\rho} \notin D$. But then $\emptyset^{(n)}$ can compute $\emptyset^{(n+1)}$ via the following algorithm: on input x, enumerate $\bar{\rho} \in \mathbb{P}_{h}$ extending $\bar{\sigma}$ until finding one with $\Gamma\left(\emptyset^{(n)}, \bar{\rho}\right)(x) \downarrow$. Since no such $\bar{\rho}$ is in D, necessarily $\Gamma\left(\emptyset^{(n)}, \bar{\rho}\right)(x)=\emptyset^{(n+1)}(x)$. Further, there will always be such a $\bar{\rho}$, since there must be one in G.

This is a contradiction, and so it must be that $\emptyset^{(n)} \oplus \bigoplus_{m<n} f_{m}^{G}$, and so $\left(f_{0}^{G}\right)^{(n)}$, does not compute $\emptyset^{(n+1)}$.

Fix $\mathcal{C}=\bigcup_{i} \bigcap_{j} \bigcup_{k} \mathcal{C}_{i, j, k}$ a $\boldsymbol{\Sigma}_{n+2}^{0}$-class, where each $\mathcal{C}_{i, j, k}$ is $\boldsymbol{\Pi}_{n-1}^{0}$. Let $\operatorname{Tot}\left(\Delta_{n}^{0}\right)$ denote the collection of Δ_{n}^{0} indices that describe total functions. Given $e \in \operatorname{Tot}\left(\Delta_{n}^{0}\right)$, let φ_{e} be the corresponding function.

Definition 20. Define a notion of forcing $\left(\mathbb{Q}, \leq_{\mathbb{Q}}\right)$ where the conditions are pairs $(\bar{\sigma}, g)$ with $\bar{\sigma} \in \mathbb{P}$ and $g: \operatorname{Tot}\left(\Delta_{n}^{0}\right) \rightarrow \omega$ a finite partial function.

Define $(\bar{\sigma}, g) \geq_{\mathbb{Q}}(\bar{\rho}, \hat{g})$ if and only if the following hold:
(1) $\bar{\sigma} \geq_{\mathbb{P}} \bar{\rho}$;
(2) $\operatorname{dom}(g) \subseteq \operatorname{dom}(\hat{g})$;
(3) For all $e \in \operatorname{dom}(g), \hat{g}(e) \geq g(e)$;
(4) For all $e \in \operatorname{dom}(g)$ and all $x \in\left(\operatorname{dom}\left(\rho_{n-1}\right)-\operatorname{dom}\left(\sigma_{n-1}\right)\right)$, if $g(e)=\hat{g}(e)$, then $\rho_{n-1}(x) \geq \varphi_{e}(x)$; and
(5) For all $e \in \operatorname{dom}(g)$, one of the following holds:
(a) $\hat{g}(e)=g(e)$; or
(b) There is an $i \leq e \operatorname{such}$ that $(\forall j<g(e)) \exists k\left(\bar{\rho} \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{C}_{i, j, k}\right]\right)$.

For G a filter, define $f_{i}^{G}=\bigcup_{(\bar{\sigma}, g) \in G} \sigma_{i}$.
Claim 20.1. For \mathcal{A} a $\boldsymbol{\Sigma}_{m}^{0}$-class with $m<n$, if $(\bar{\sigma}, g) \vdash_{\mathbb{Q}}\left[f_{0} \in \mathcal{A}\right]$, then there is $(\bar{\tau}, g) \leq_{\mathbb{Q}}(\bar{\sigma}, g)$ with $\left(\tau_{0}, \ldots, \tau_{m-1}, \emptyset, \ldots, \emptyset\right) \vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{A}\right]$.

For \mathcal{B} a Π_{m}^{0}-class with $m<n$, if $(\bar{\sigma}, g) \Vdash_{\mathbb{Q}}\left[f_{0} \in \mathcal{B}\right]$, then $\left(\sigma_{0}, \ldots, \sigma_{m}, \emptyset, \ldots, \emptyset\right) \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{B}\right]$.

Proof. As Claim 19.1, mutatis mutandis.
Claim 20.2. For \mathcal{B} a Π_{m}^{0}-class with $m<n$ and $(\bar{\sigma}, g) \in \mathbb{Q}$, if $\bar{\sigma} \Vdash_{\mathbb{P}}$ $\left[f_{0} \in \mathcal{B}\right]$, then $\left(\sigma_{0}, \ldots, \sigma_{m}, \emptyset, \ldots, \emptyset, g\right) \Vdash_{\mathbb{Q}}\left[f_{0} \in \mathcal{B}\right]$.

Proof. As Claim 19.2, mutatis mutandis.
Now fix G a sufficiently generic filter for $\left(\mathbb{Q}, \leq_{\mathbb{Q}}\right)\left(\Delta_{\omega}^{0}(\mathcal{C})\right.$-generic should suffice).

Claim 20.3. If ℓ is such that for every $i \leq \ell, f_{0}^{G} \notin \bigcap_{j} \bigcup_{k} \mathcal{C}_{i, j, k}$, then there is $(\bar{\sigma}, g) \in G$ such that for all $(\bar{\tau}, \dot{g}) \leq_{\mathbb{Q}}(\bar{\sigma}, g)$ and all $e \leq \ell$ with $e \in \operatorname{Tot}\left(\Delta_{n}^{0}\right), \dot{g}(e)=g(e)$.

Proof. For every $i \leq \ell$, there some j_{i} and some $(\bar{\sigma}, g) \in G$ with $(\bar{\sigma}, g) \Vdash_{\mathbb{Q}}\left[f_{0} \notin \bigcup_{k} \mathcal{C}_{i, j_{i}, k}\right]$. By taking a common extension, there is a single $(\bar{\sigma}, g) \in G$ that serves for all $i \leq \ell$. Now suppose there were some $(\bar{\tau}, \dot{g}) \leq_{\mathbb{Q}}(\bar{\sigma}, g), i \leq \ell$ and k such that $\bar{\tau} \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{C}_{i, j_{i}, k}\right]$. Then by Claim 20.2, we would have $(\bar{\tau}, \dot{g}) \Vdash_{\mathbb{Q}}\left[f_{0} \in \mathcal{C}_{i, j_{i}, k}\right]$, a contradiction.

Let $j_{0}=\max _{i \leq \ell}\left\{j_{i}\right\}$. Then for each $(\bar{\tau}, \dot{g}) \leq_{\mathbb{Q}}(\bar{\rho}, \hat{g}) \leq_{\mathbb{Q}}(\bar{\sigma}, g)$ and each $e<i_{0}$ with $e \in \operatorname{Tot}\left(\Delta_{n}^{0}\right)$, if $e \in \operatorname{dom}(\hat{g})$ and $\hat{g}(e)>j_{0}$, then $\dot{g}(e)=\hat{g}(e)$. For if this were not the case, by definition we would
have $\bar{\tau} \Vdash_{\mathbb{P}}\left[f_{0} \in C_{i, j_{i}, k}\right]$ for some $i \leq \ell$ and some k, contrary to the previous paragraph. So for each $e \leq \ell$ with $e \in \operatorname{Tot}\left(\Delta_{n}^{0}\right)$, the set $\{\hat{g}(e):(\bar{\rho}, \hat{g}) \in G\}$ has a maximum. By replacing $(\bar{\sigma}, g)$ with some extension, if necessary, we may assume that $g(e)$ is defined and achieves this maximum.

Claim 20.4. If $f_{0}^{G} \in \mathcal{C}$, then $G_{1}=\{\bar{\sigma}: \exists g(\bar{\sigma}, g) \in G\}$ is $\left(\mathbb{P}_{h}, \leq_{\mathbb{P}}\right)$ generic for some Δ_{n}^{0} function h.

Proof. Fix i_{0} least with $f_{0}^{G} \in \bigcap_{j} \bigcup_{k} \mathcal{C}_{i_{0}, j, k}$. Let $(\bar{\sigma}, g)$ be as in Claim 20.3 with $\ell=i_{0}-1$.

Now, define $h \succ \sigma_{n-1}$ as
$h(x)= \begin{cases}\min \left\{\max \left\{\varphi_{e}(x): e<i_{0} \wedge e \in \operatorname{Tot}\left(\Delta_{n}^{0}\right)\right\}, \sigma_{n-1}(x),\right\} & \text { if } x<\left|\sigma_{n-1}\right|, \\ \max \left\{\varphi_{e}(x): e<i_{0} \wedge e \in \operatorname{Tot}\left(\Delta_{n}^{0}\right)\right\} & \text { otherwise } .\end{cases}$
Note that $h \in \Delta_{n}^{0}$. This is the desired function.
Since for any $(\bar{\tau}, \dot{g}) \leq_{\mathbb{Q}}(\bar{\sigma}, g)$, we know $\dot{g}(e)=g(e)$ for all $e<i_{0}$ with $e \in \operatorname{Tot}\left(\Delta_{n}^{0}\right)$, then by definition we have that $\bar{\tau} \in \mathbb{P}_{h}$. Thus $G_{1} \subseteq \mathbb{P}_{h}$.

Suppose now that $D \subseteq \mathbb{P}_{h}$ is such that every condition in G_{1} can be extended to a condition in D. It suffices to show that for any condition $(\bar{\rho}, \hat{g}) \in G$ extending $(\bar{\sigma}, g)$, there is a condition $(\bar{\tau}, \dot{g}) \in \mathbb{Q}$ with $\bar{\tau} \in D$.

Since $f_{0}^{G} \in \bigcup_{k} \mathcal{C}_{i_{0}, j, k}$ for all j, choose $\left(\bar{\nu}, g^{\prime}\right) \leq_{\mathbb{Q}}(\bar{\rho}, \hat{g})$ in G such that

$$
(\forall j<\max \{\hat{g}(e): e \in \operatorname{dom}(\hat{g})\}) \exists k\left(\left(\bar{\nu}, g^{\prime}\right) \vdash_{\mathbb{Q}}\left[f_{0} \in \mathcal{C}_{i_{0}, j, k}\right]\right) .
$$

Then by Claim 20.1,

$$
(\forall j<\max \{\hat{g}(e): e \in \operatorname{dom}(\hat{g})\}) \exists k\left(\bar{\nu} \Vdash_{\mathbb{P}}\left[f_{0} \in \mathcal{C}_{i_{0}, j, k}\right]\right) .
$$

Choose $\bar{\tau} \in D$ extending $\bar{\nu}$. Define \dot{g} as:

$$
\dot{g}(e)=\left\{\begin{array}{cl}
\hat{g}(e) & e<i_{0} \text { and } e \in \operatorname{dom}(\hat{g}), \\
\hat{g}(e)+1 & \geq i_{0} \text { and } e \in \operatorname{dom}(\hat{g}) .
\end{array}\right.
$$

Note that by our choice of $\bar{\nu},(\bar{\tau}, \dot{g}) \leq_{\mathbb{Q}}(\bar{\rho}, \hat{g})$.

This demonstrates that every condition in G can be extended to a condition $(\bar{\tau}, \dot{g}) \in \mathbb{Q}$ with $\bar{\tau} \in D$. So if G is sufficiently generic relative to D, then G_{1} must meet D.

It follows that if $f_{0}^{G} \in \mathcal{C}$, then f_{0}^{G} is not high .
Claim 20.5. If $f_{0}^{G} \notin \mathcal{C}$, then f_{n-1}^{G} dominates all total Δ_{n}^{0} functions.
Proof. Fix $e \in \operatorname{Tot}\left(\Delta_{n}^{0}\right)$. Let $(\bar{\sigma}, g)$ be as in Claim 20.3 with $\ell=e$.
Then by definition, for all $(\bar{\rho}, \hat{g}) \leq_{\mathbb{Q}}(\bar{\sigma}, g)$ and all $x \in\left(\operatorname{dom}\left(\rho_{n-1}\right)-\right.$ $\operatorname{dom}\left(\sigma_{n-1}\right)$), we have $\rho_{n-1}(x) \geq \varphi_{e}(x)$. So $f_{n-1}^{G}(x) \geq \varphi_{e}(x)$ for all $x \geq\left|\sigma_{n-1}\right|$.

By the limit lemma, $f_{n-1}^{G} \leqslant_{T}\left(f_{0}^{G}\right)^{(n-1)}$. It follows that if $f_{0}^{G} \notin \mathcal{C}$, then f_{0}^{G} is high_{n}.

Proof of Theorem 18. For any $\boldsymbol{\Sigma}_{n+2}^{0}$-class \mathcal{C}, the above forcing produces a function f_{0}^{G} such that $f_{0}^{G} \in \mathcal{C} \Longleftrightarrow f_{0}^{G}$ is not high ${ }_{n}$.

Theorem 21. There is a Σ_{n+1}-spectrum that is not a Σ_{n}-spectrum of any structure.

Proof. Follows directly from Proposition 15 and Theorem 18.

6. Σ_{n}-SPECTRA VS THEORY SPECTRA

We now prove that there is a theory spectrum that is not a Σ_{n} spectrum, for any $n \geqslant 1$.

Definition 22. Let $\mathcal{F}=\left\{X \in 2^{\omega}:(\exists \Phi)(\forall n)\left[\Phi\left(X^{(n)} \oplus\{n\}\right)=\emptyset^{(2 n)}\right]\right\}$.
Theorem 23. \mathcal{F} is not the Σ_{k}-spectrum of any structure \mathcal{M} for any $k \in \omega$.

Proof. Suppose not, and fix witnessing M and k. By a standard Friedberg jump inversion construction, fix \mathbf{a} and \mathbf{b} forming a minimal pair over $\mathbf{0}^{(3 k)}$ with $\mathbf{a}^{\prime}=\mathbf{b}^{\prime}=\mathbf{0}^{(\omega)}$. By jump inversion again, there are \mathbf{c} and \mathbf{d} both above $\mathbf{0}^{(2 k)}$ with $\mathbf{c}^{(k)}=\mathbf{a}$ and $\mathbf{d}^{(k)}=\mathbf{b}$.

Note that $\mathbf{c} \in \mathcal{F}$: for $C \in \mathbf{c}$, if $n \leq k, C^{(n)} \geqslant_{T} C \geqslant_{T} \emptyset^{(2 k)} \geqslant_{T} \emptyset^{(2 n)}$; if $n>k, C^{(n)} \geqslant_{T} C^{(k+1)}=\emptyset^{(\omega)} \geqslant_{T} \emptyset^{(2 n)}$. Further, all of these reductions are uniform. Similarly, $\mathbf{d} \in \mathcal{F}$. Thus there is an $M_{\mathbf{c}} \in \mathbf{c}$ and an $M_{\mathbf{d}} \in \mathbf{d}$ with

$$
\operatorname{Th}_{\Sigma_{k}}\left(\mathcal{M}_{\mathbf{c}}\right)=\operatorname{Th}_{\Sigma_{k}}\left(\mathcal{M}_{\mathbf{d}}\right)=\operatorname{Th}_{\Sigma_{k}}(\mathcal{M})
$$

Then $\operatorname{Th}_{\Sigma_{k}}(\mathcal{M}) \in \Sigma_{k}^{0}(\mathbf{c}) \subset \Delta_{1}^{0}(\mathbf{a})$, and $\operatorname{Th}_{\Sigma_{k}}(\mathcal{M}) \in \Sigma_{k}^{0}(\mathbf{d}) \subset \Delta_{1}^{0}(\mathbf{b})$. By our choice of \mathbf{a} and $\mathbf{b}, \operatorname{Th}_{\Sigma_{k}}(\mathcal{M}) \in \Delta_{1}^{0}\left(\mathbf{0}^{(3 k)}\right)$, and so there is a $\mathbf{0}^{(3 k)}{ }^{(3)}$ computable model of $\mathrm{Th}_{\Sigma_{k}}(\mathcal{M})$. But clearly no arithmetical degree can be in \mathcal{F}, which is a contradiction.

Theorem 24. There is a structure \mathcal{M} with $\operatorname{DgSp}(\mathcal{M}, \cong)=$ $\operatorname{DgSp}(\mathcal{M}, \equiv)=\mathcal{F}$.

Proof. Our structure will be an effective disjoint union $\mathcal{M}=\bigsqcup_{n \in \omega} \mathcal{M}_{n}$. In \mathcal{M}_{n}, we will code $\emptyset^{(2 n)}$ in a manner than can be decoded by the nth jump. Our language for \mathcal{M}_{n} will be $\left\{P_{i}, N_{i}\right\}_{i \in \omega} \cup\{\rightarrow\}$, where the P_{i} and N_{i} are unary relations, and \rightarrow is a binary relation.

We recall the following trees (in the language of directed graphs), originally due to Hirschfeldt and White [8]:

- A_{1} is the tree consisting of only the root;
- E_{1} is the tree where the root has infinitely many children, and all of these children are leaves;

Figure 1. The tree E_{1}.

- A_{k+1} is the tree where the root has infinitely many children all of whose subtrees are a copy of E_{k};

Figure 2. The tree A_{k+1}.

- E_{k+1} is the tree where the root has infinitely many children whose subtrees are a copy of E_{k}, and also has infinitely many children whose subtrees are a copy A_{k}.

Figure 3. The tree E_{k+1}.
Hirschfeldt and White showed that given a Σ_{k}^{0} predicate, one can computably construct a tree T which is isomorphic to E_{k} if the predicate holds, and is isomorphic to A_{k} if it fails, and further this construction is uniform in an index for the predicate.

Also, there is a first-order Σ_{k} formula that holds of the root of the E_{k} tree, but does not hold of the root of the A_{k} tree. We define these recursively: define $\varphi_{1}(x): \exists z[x \rightarrow z]$; define $\varphi_{k+1}(x): \exists z[x \rightarrow$ $\left.z \wedge \neg \varphi_{k}(z)\right]$.

We now construct \mathcal{M}_{n} as follows: for each i, there is a unique element x with $\mathcal{M} \models P_{i}(x)$, and x is the root of a tree of type E_{n+1} if $i \in \emptyset^{(2 n)}$ and of type A_{n+1} if $i \notin \emptyset^{(2 n)}$; conversely there is a unique element y with $\mathcal{M} \models N_{i}(y)$, and y is the root of a tree of type A_{n+1} if $i \in \emptyset^{(2 n)}$ and of type E_{n+1} if $i \notin \emptyset^{(2 n)}$.

We claim that if $X \in \mathcal{F}$, then X uniformly computes a copy of \mathcal{M}_{n}. For $\emptyset^{(2 n)} \in \Delta_{n+1}^{0}(X)$, and thus for the x and y with $P_{i}(x)$ and $N_{i}(y)$, we can construct the trees rooted at x and y computably relative to X as described above.

Conversely, we claim that if X uniformly computes structures $\left(L_{n}\right)_{n \in \omega}$ with L_{n} elementarily equivalent to \mathcal{M}_{n}, then $X \in \mathcal{F}$. For $i \in \emptyset^{(2 n)} \Longleftrightarrow\left(\exists x \in L_{n}\right)\left[P_{i}(x) \wedge \varphi_{n+1}(x)\right] \Longleftrightarrow\left(\forall y \in L_{n}\right)\left[N_{i}(y) \Rightarrow \neg \varphi_{n+1}(y)\right]$. Thus $\emptyset^{(2 n)} \in \Delta_{n+1}^{0}(X)$, and further the code is obtained uniformly.

References

[1] Uri Andrews and Joseph S. Miller. Spectra of theories and structures. Proc. Amer. Math. Soc., 143(3):1283-1298, 2015.
[2] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Computability by probabilistic machines. In Automata studies, Annals of mathematics studies, no. 34, pages 183-212. Princeton University Press, Princeton, N. J., 1956.
[3] Ekaterina B. Fokina, Valentina Harizanov, and Alexander Melnikov. Computable model theory. In Rod Downey, editor, Turing's Legacy, pages 124-194. Cambridge University Press, 2014. Cambridge Books Online.
[4] Ekaterina B. Fokina, Dino Rossegger, and Luca San Mauro. Bi-embeddability spectra of structures. preprint.
[5] Noam Greenberg, Antonio Montalbán, and Theodore A. Slaman. Relative to any non-hyperarithmetic set. J. Math. Log., 13(1):1250007, 26, 2013.
[6] D. Hirschfeldt, B. Khoussainov, R. Shore, and A. Slinko. Degree spectra and computable dimensions in algebraic structures. Ann. Pure Appl. Logic, 115(1-3):71-113, 2002.
[7] Denis R. Hirschfeldt and Walker M. White. Realizing levels of the hyperarithmetic hierarchy as degree spectra of relations on computable structures. Notre Dame J. Formal Logic, 43(1):51-64 (2003), 2002.
[8] I. Sh. Kalimullin. Almost computably enumerable families of sets. Mat. Sb., 199(10):33-40, 2008.
[9] Julia F. Knight. Degrees coded in jumps of orderings. J. Symbolic Logic, 51(4):1034-1042, 1986.
[10] Linda Jean Richter. Degrees of structures. J. Symbolic Logic, 46(4):723-731, 1981.
[11] T. Slaman. Relative to any nonrecursive set. Proc. Amer. Math. Soc., 126(7):2117-2122, 1998.
[12] Ivan N. Soskov. Degree spectra and co-spectra of structures. Annuaire Univ. Sofia Fac. Math. Inform., 96:45-68, 2004.
[13] S. Wehner. Enumerations, countable structures and Turing degrees. Proc. Amer. Math. Soc., 126(7):2131-2139, 1998.
[14] Liang Yu. Degree spectra of equivalence relations. In Proceedings of the 13th Asian Logic Conference, pages 237-242. World Sci. Publ., Hackensack, NJ, 2015.

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, Austria

E-mail address: ekaterina.fokina@tuwien.ac.at

Department of Computer Science, University of Liverpool, Liverpool, United Kingdom

E-mail address: pavel.semukhin@liverpool.ac.uk

School of Mathematics and Statistics, University of Wellington, Wellington, New Zealand

E-mail address: dan.turetsky@vuw.ac.nz

